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1
COMPUTER-IMPLEMENTED SYSTEM WITH
ADAPTIVE COGNITIVE FEATURES AND
METHOD OF USING THE SAME

BACKGROUND OF THE INVENTION

The field of the invention relates generally to computer-
implemented programs and, more particularly, to acomputer-
implemented system with adaptive cognitive learning fea-
tures.

Most known supply chains include a system of organiza-
tions, people, and technology that initiate and manage activi-
ties, manage the flow of information and resources that manu-
facture, assemble, and distribute products and materials. Such
organizations and people include suppliers, manufacturers,
distributors, wholesalers, retailers, and consumers. The sup-
ply chains also facilitate relationships between the organiza-
tions and people.

At least some known computer-implemented supply chain
management systems include sufficient programming to
execute supply chain operation based on static data. For
example, such systems can determine a least cost method of
transporting a product between two points based upon stati-
cally-established fuel costs, labor costs, and shipping periods.
However, such systems have limited resources for processing
the large amounts of data, both static and dynamic data, as
well as time sensitive data, typically associated with large-
scale, international supply chain networks. Such data
includes aging weather forecasts and traffic conditions. Also,
such systems lack mechanisms to distinguish between valid
data and invalid data.

Many such known systems require routine human inter-
vention to input emergent data and to correct for unforeseen
events. For example, human dispatchers facilitate enhancing
the efficiency of a fleet by taking into account static variables
such as delivery windows, contracted levels of service, and
estimated times of arrival (ETA). In addition to these static
variables, dispatchers also respond to dynamic conditions, for
example, seasonal traffic conditions, unanticipated disruptive
weather, and real-time driver behavior. For emergent adverse
conditions, the dispatchers react to reduce the impact of those
adverse conditions on operation after some period of latency
associated with data collection, report delivery, and human
deliberation. Furthermore, such systems require humans to
perform pre-delivery planning and post-delivery analysis,
wherein the post-delivery analysis is used as a feedback
mechanism for subsequent pre-delivery planning. Moreover,
since such systems lack adaptive cognitive features, including
adaptive learning features, subsequent corrections for real-
world, real-time, unanticipated events need to be directed by
a human agent.

BRIEF SUMMARY OF THE INVENTION

In one aspect, a computer-implemented system is pro-
vided. The system includes an edge module and at least one
input device coupled to the edge module. The at least one
input device is configured to generate data input signals. The
system also includes a cognitive module coupled to the edge
module. The cognitive module includes a perception sub-
module coupled to the edge module. The perception sub-
module is configured to receive the data input signals. The
cognitive module also includes a learning sub-module
coupled to the perception sub-module. The learning sub-
module is configured to adaptively learn at least in part uti-
lizing the data input signals.
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In a further aspect, a method of using a computer-imple-
mented system having adaptable cognitive features is pro-
vided. The method includes executing instructions stored on
a computer-readable medium. The instructions include gen-
erating a plurality of potential solutions in accordance with at
least one predetermined goal of the computer-implemented
system to ameliorate a dynamically determined condition
based on at least one of real-time data inputs transmitted from
at least one data input entity and at least one model formed
and stored within the computer-implemented system. The
instructions also include generating at least one scenario for
each of the plurality of solutions defining at least one string of
forecasted real world events resulting from implementation
of'each of the plurality of solutions. The forecasted real world
events are at least one of possible and probable. The instruc-
tions further include comparing the strings of possible and
probable forecasted real world events resulting from the
implementation of each of the plurality of potential solutions
to each other. The instructions also include selecting at least
one course of action from the plurality of potential solutions
based at least in part on the comparison. The instructions
further include transmitting at least one directive associated
with the at least one course of action to at least one operative
entity, thereby executing the at least one course of action.

In another aspect, a method of using a computer-imple-
mented system with adaptable cognitive features is provided.
The method includes executing instructions stored on a com-
puter-readable medium. The instructions include determin-
ing a pattern of performance of the computer-implemented
system by analyzing at least one of historical data and previ-
ously generated courses of action. The instructions also
include transmitting the pattern of performance to an adaptive
cognitive module of the computer-implemented system. The
instructions further include modifying a model using the
adaptive cognitive module.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages will
become better understood when the following detailed
description is read with reference to the accompanying draw-
ings in which like characters represent like parts throughout
the drawings, wherein:

FIG. 1 is a block diagram of an exemplary computing
device that may be used to provide residence to at least a
portion of an intelligent, neuromorphic, and adaptive cogni-
tive system;

FIG. 2 is block diagram of a portion of an exemplary
intelligent, neuromorphic, and adaptive cognitive system;

FIG. 3 is a schematic view of an exemplary high-level
cognitive architecture that may be used with the adaptive
cognitive system shown in FIG. 2;

FIG. 4 is a flow chart of an exemplary model of perception
data flow that may be used with the adaptive cognitive system
shown in FIG. 2;

FIG. 5 is a flow chart of an exemplary model of comparison
data flow that may be used with the adaptive cognitive system
shown in FIG. 2;

FIG. 6 is a flow chart of an exemplary functional logic
architecture that may be used with the adaptive cognitive
system shown in FIG. 2;

FIG. 7 is a view of the functional logic architecture shown
in FIG. 6 in relationship to the high-level cognitive architec-
ture shown in FIG. 3;

FIG. 8 is a schematic view of an exemplary learning sub-
system architecture that may be used with the functional logic
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architecture shown in FIG. 6 in relationship to the high-level
cognitive architecture shown in FIG. 3;

FIG. 9 is a schematic view of an exemplary problem solv-
ing subsystem architecture that may be used with the func-
tional logic architecture shown in FIG. 6 in relationship to the
high-level cognitive architecture shown in FIG. 3;

FIG. 10 is a flow chart of an exemplary input and output
(I/O) architecture that may be used with the functional logic
architecture shown in FIGS. 6 and 7,

FIG. 11 is a flow chart of an exemplary implementation of
a learning controller sequence that may be used with the [/O
architecture shown in FIG. 10;

FIG. 12 is a flow chart of an exemplary support vector
machine (SVM) clustering portion of the learning controller
sequence shown in FIG. 11;

FIG. 13 is a flow chart of an exemplary artificial neural
network (ANN) and genetic algorithm (GA) portion of the
learning controller sequence shown in FIG. 11;

FIG. 14 is a flow chart of an exemplary SVM learning
portion of the learning controller sequence shown in FIG. 11;

FIG. 15 is a flow chart of an exemplary model of general-
ized continuous learning that may be used with the adaptive
cognitive system shown in FIG. 2;

FIG. 16 is a flow chart of an exemplary model of learning
during execution of a plan, and adapting to changes in the
plan, wherein the plan includes multiple shipping routes and
trips, such model may be used with the adaptive cognitive
system shown in FIG. 2;

FIG. 17 is a flow chart of an exemplary model of problem
solving during derivation of an estimated time of arrival for a
route and trip that may be used with the adaptive cognitive
system shown in FIG. 2; and

FIG. 18 is a flow chart of an exemplary model of a decision
making process that may be used with the adaptive cognitive
system shown in FIG. 2.

Unless otherwise indicated, the drawings provided herein
are meant to illustrate key inventive features of the invention.
These key inventive features are believed to be applicable in
a wide variety of systems comprising one or more embodi-
ments ofthe invention. As such, the drawings are not meant to
include all conventional features known by those of ordinary
skill in the art to be required for the practice of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Inthe following specification and the claims, reference will
be made to a number of terms, which shall be defined to have
the following meanings.

The singular forms “a”, “an”, and “the” include plural
references unless the context clearly dictates otherwise.

“Optional” or “optionally” means that the subsequently
described event or circumstance may or may not occur, and
that the description includes instances where the event occurs
and instances where it does not.

As used herein, the terms “intelligence” and “intelligent”
are intended to be descriptive of any computer-implemented
programs and computer-based systems that are implemented
such that they demonstrably exhibit abilities, including, with-
out limitation, attention, abstract thought, understanding,
communication, reasoning, learning, planning, emotional
intelligence and/or problem solving.

As used herein, the terms “neuromorphic programs” and
“neuromorphic systems” are intended to be representative of
any computer-implemented programs and computer-based
systems that are implemented such that they emulate neuro-
biological architectures present in the nervous system. Also,
as used herein, the terms “neuromorphic programs” and “neu-
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romorphic systems” are intended to be representative of any
combination of analog, digital, mixed-mode analog/digital,
and software systems that implement models of neural sys-
tems that emulate, without limitation, human perception,
human motor control, and human sensory processing. Fur-
ther, as used herein, such neuromorphic programs and sys-
tems are flexible and may morph and/or adapt to emergent
conditions as necessary.

As used herein, the terms “cognitive” and “cognition” are
intended to be descriptive of any computer-implemented pro-
grams and computer-based systems that execute processes
that include, without limitation, continuous learning, adapta-
tion, planning, remembering, forgetting, language, memory
structure, perception, communicating, deliberating, applying
knowledge, solving problems, making decisions, changing
preferences, sensory input, internal thinking, and reflex
actions. Cognition, or cognitive processes, can be artificial
including states of intelligent entities, such as, highly autono-
mous machines and artificial intelligences that have the abil-
ity to process, e.g., take into consideration, feedback from the
environment.

As used herein, the term “asset management system” is
intended to be representative of any computer-implemented
programs and computer-based systems that facilitate, without
limitation, design, planning, execution, control, and monitor-
ing of assets. Such asset management systems include, with-
out limitation, “supply chain management (SCM) systems.”
As used herein, SCM systems facilitate executing activities
that include, without limitation, tracking movement and stor-
age of raw materials, tracking work-in-process inventory, and
tracking finished goods from a point of origin to a point of
consumption, and synchronizing supply with demand.

As used herein, the terms “intelligent system”, “artificial
intelligence”, “intelligent agent”, and “artificial conscious-
ness” are intended to be representative of, without limitation,
any computer-implemented programs and computer-based
systems that perceive their environments, independently
determine courses of action, and take the actions that will
maximize the chances of success.

As used herein, the terms “artificial neural network
(ANN)” and “neural network (NN)” are intended to be rep-
resentative of any computer-implemented programs and
computer-based systems that model complex relationships
between inputs and outputs or to find patterns in data. Also, as
used herein, ANNs and NN are adaptive systems that change
their structure based on external or internal information that
flows through the network during a learning phase.

As used herein, the term “support vector machine (SVM)”
is intended to be representative of any computer-imple-
mented and computer-based classification methods that con-
struct hyperplanes in multidimensional space to analyze data,
recognize patterns, classify and sort such data with similar
attributes into one set of defined groups, categorize and sort
such data with similar and/or differing attributes into other
sets of defined groups, and develop the ability to predict such
classification and/or categorization after “training” with
training data.

As used herein, the term “SVM clustering” is intended to
be representative of any computer-implemented and com-
puter-based methods that use an SVM-based clustering algo-
rithm to classify and categorize data according to the
attributes of the data. Such attributes may be predefined,
including each attribute having a predefined relevance, and
the clustering algorithm will cluster according to the pre-
defined attributes and their degree of relevance. Such SVM
clustering algorithms are typically referred to as “supervised”
SVM algorithms and require external support for their train-
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ing. Alternatively, such attributes may be undefined and the
clustering algorithm will self-determine such attributes, sort
accordingly, and review the sorted data for attribute consis-
tency, thereby performing self-training. Such SVM clustering
algorithms are typically referred to as “non-parametric” SVM
algorithms and require little to no external support for their
training.

As used herein, the term “sparse distributed memory
(SDM)” is intended to be representative of any computer-
implemented and computer-based random-access, content
addressable memory that mathematically model human long-
term memory for storing and retrieving large amounts (i.e., in
excess of 2'°%° bits) of information without focusing on the
accuracy of the information. Such sparse distributed memory
uses patterns to serve as memory addresses, where informa-
tion is retrieved based on similarities between addresses.
Memory addresses are all in a list even if they are not related,
but are only retrieved based on similar content between them.
Also, as used herein, SDM can be used as a perceptual
memory system that allows for retrieving best-match memo-
ries, associative memories, sequences, and predicting future
inputs.

As used herein, the term “genetic algorithm (GA)” is
intended to be representative of any portion of computer-
implemented programs and computer-based systems that
includes a search heuristic that emulates the process of natu-
ral evolution to generate useful solutions to optimization and
search problems.

As used herein, the term “heuristic” is intended to be rep-
resentative of any portion of computer-implemented pro-
grams and computer-based systems that uses experience-
based techniques for problem solving, learning, and
discovery.

As used herein, the term “Java® Native Interface (JNI, or
Jini)” is intended to be representative of any computer-imple-
mented programs and computer-based systems that are a
programming framework that enables Java® code running in
a Java® Virtual Machine (JVM) to call, and to be called by,
native applications, i.e., programs specific to a hardware and
operating system platform, and libraries written in other lan-
guages, e.g., C, C++, and assembly. Java® is a registered
trademark of Oracle Corporation headquartered in Redwood
Shores, Calif., USA.

As used herein, the term “thread” is intended to be repre-
sentative of the smallest unit of any computer-implemented
and computer-based processing that can be scheduled by an
operating system.

As used herein, the term “model-view-controller MVC)”
is intended to be representative of any computer-imple-
mented and computer-based software architectural pattern
that isolates “domain logic”, i.e., the application logic for the
user, from the user interface (U]), i.e., input and presentation,
thereby {facilitating independent development, testing and
maintenance of each, while facilitating a loose coupling
between these elements.

As used herein, the term “non-transitory computer-read-
able media” is intended to be representative of any tangible
computer-based device implemented in any method or tech-
nology for short-term and long-term storage of information,
such as, computer-readable instructions, data structures, pro-
gram modules and sub-modules, or other data in any device.
Therefore, the methods described herein may be encoded as
executable instructions embodied in a tangible, non-transi-
tory, computer readable medium, including, without limita-
tion, a storage device and/or a memory device. Such instruc-
tions, when executed by a processor, cause the processor to
perform at least a portion of the methods described herein.
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Moreover, as used herein, the term “non-transitory computer-
readable media” includes all tangible, computer-readable
media, including, without limitation, non-transitory com-
puter storage devices, including, without limitation, volatile
and nonvolatile media, and removable and non-removable
media such as a firmware, physical and virtual storage, CD-
ROMs, DVDs, and any other digital source such as a network
or the Internet, as well as yet to be developed digital means,
with the sole exception being a transitory, propagating signal.

As used herein, the term “dynamic contextual data” is
intended to be representative of any data that includes con-
textual associations and interrelationships with respect to any
other data in a dynamic environment. Similarly, as used
herein, “static contextual data” is intended to be representa-
tive of any data that includes contextual associations and
interrelationships with respect to any other data in a static
environment.

As used herein, the terms “software” and “firmware” are
interchangeable, and include any computer program stored in
memory for execution by devices that include, without limi-
tation, mobile devices, clusters, personal computers, work-
stations, clients, and servers.

Asused herein, the term “real-time” refers to at least one of
the time of occurrence of the associated events, the time of
measurement and collection of predetermined data, the time
to process the data, and the time of a system response to the
events and the environment. In the embodiments described
herein, these activities and events occur substantially instan-
taneously.

As used herein, the term “computer” and related terms,
e.g., “computing device”, are not limited to integrated circuits
referred to in the art as a computer, but broadly refers to a
microcontroller, a microcomputer, a programmable logic
controller (PL.C), an application specific integrated circuit,
and other programmable circuits, and these terms are used
interchangeably herein.

Approximating language, as used herein throughout the
specification and claims, may be applied to modify any quan-
titative representation that could permissibly vary without
resulting in a change in the basic function to which it is
related. Accordingly, a value modified by a term or terms,
such as “about” and “substantially”, are not to be limited to
the precise value specified. In at least some instances, the
approximating language may correspond to the precision of
an instrument for measuring the value. Here and throughout
the specification and claims, range limitations may be com-
bined and/or interchanged, such ranges are identified and
include all the sub-ranges contained therein unless context or
language indicates otherwise.

FIG. 1 is a block diagram of an exemplary computing
device 105 that may be used to provide residence to at least a
portion of an intelligent, neuromorphic, cognitive, computer-
implemented asset management system with adaptive cogni-
tive features, i.e., an intelligent, neuromorphic, cognitive
asset management, or supply chain management (SCM) sys-
tem (not shown in FIG. 1).

Computing device 105 includes a memory device 110 and
a processor 115 operatively coupled to memory device 110
for executing instructions. Processor 115 may include one or
more processing units (e.g., in a multi-core configuration). In
some embodiments, executable instructions are stored in
memory device 110. Computing device 105 is configurable to
perform one or more operations described herein by program-
ming processor 115. For example, processor 115 may be
programmed by encoding an operation as one or more execut-
able instructions and providing the executable instructions in
memory device 110.
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In the exemplary embodiment, memory device 110 is one
or more devices that enable storage and retrieval of informa-
tion such as executable instructions and/or other data.
Memory device 110 may include one or more tangible, non-
transitory computer-readable media, such as, without limita-
tion, random access memory (RAM), dynamic random
access memory (DRAM), static random access memory
(SRAM), a solid state disk, a hard disk, read-only memory
(ROM), erasable programmable ROM (EPROM), electri-
cally erasable programmable ROM (EEPROM), and/or non-
volatile RAM (NVRAM) memory. The above memory types
are exemplary only, and are thus not limiting as to the types of
memory usable for storage of a computer program.

Also, in the exemplary embodiment, memory device 110
includes a sparse distributed memory (SDM) configuration,
wherein such SDM configuration is defined using software.
Alternatively, such SDM configuration is defined using any
combination of SDM-capable hardware and SDM-compat-
ible software that enables operation of the adaptive cognitive
system as described herein.

Memory device 110 may be configured to store operational
measurements including, without limitation, shipping points,
destination points, real-time weather and traffic conditions
therebetween, and/or any other type of data. In some embodi-
ments, processor 115 removes or “purges” data from memory
device 110 based on the age of the data. For example, proces-
sor 115 may overwrite previously recorded and stored data
associated with a subsequent time and/or event. In addition,
or alternatively, processor 115 may remove data that exceeds
a predetermined time interval. Also, memory device 110
includes, without limitation, sufficient data, algorithms, and
commands to facilitate operation of the intelligent, neuromor-
phic, cognitive system with adaptive cognitive features (dis-
cussed further below).

In some embodiments, computing device 105 includes a
presentation interface 120 coupled to processor 115. Presen-
tation interface 120 presents information, such as a user inter-
face and/or an alarm, to a user 125. In one embodiment,
presentation interface 120 includes a display adapter (not
shown) that is coupled to a display device (not shown), such
as a cathode ray tube (CRT), a liquid crystal display (LCD),
an organic LED (OLED) display, and/or an “electronic ink”
display. In some embodiments, presentation interface 120
includes one or more display devices. In addition, or alterna-
tively, presentation interface 120 includes an audio output
device (not shown) (e.g., an audio adapter and/or a speaker)
and/or a printer (not shown). In some embodiments, presen-
tation interface 120 presents an alarm associated with a syn-
chronous machine (not shown in FIG. 1), such as by using a
human machine interface (HMI) (not shown).

In some embodiments, computing device 105 includes a
user input interface 130. In the exemplary embodiment, user
input interface 130 is coupled to processor 115 and receives
input from user 125. User input interface 130 may include, for
example, a keyboard, a pointing device, a mouse, a stylus, a
touch sensitive panel (e.g., a touch pad or a touch screen),
and/or an audio input interface (e.g., including a micro-
phone). A single component, such as a touch screen, may
function as both a display device of presentation interface 120
and user input interface 130.

A communication interface 135 is coupled to processor
115 and is configured to be coupled in communication with
one or more other devices, such as a sensor or another com-
puting device 105, and to perform input and output operations
with respect to such devices. For example, communication
interface 135 may include, without limitation, a wired net-
work adapter, a wireless network adapter, a mobile telecom-
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munications adapter, a serial communication adapter, and/or
a parallel communication adapter. Communication interface
135 may receive data from and/or transmit data to one or more
remote devices. For example, a communication interface 135
of one computing device 105 may transmit an alarm to the
communication interface 135 of another computing device
105. Communications interface 135 facilitates machine-to-
machine communications, i.e., acts as a machine-to-machine
interface.

Presentation interface 120 and/or communication interface
135 are both capable of providing information suitable foruse
with the methods described herein (e.g., to user 125 or
another device). Accordingly, presentation interface 120 and
communication interface 135 may be referred to as output
devices. Similarly, user input interface 130 and communica-
tion interface 135 are capable of receiving information suit-
able for use with the methods described herein and may be
referred to as input devices. Interaction of the intelligent,
neuromorphic, cognitive systems described herein with a
human are not limited to presentation interface 120 and com-
munication interface 135. Rather, other devices (none shown)
may be used to communicate with the intelligent, neuromor-
phic, cognitive systems, for example, without limitation, por-
table devices with a man-machine-interface (MMI).

FIG. 2 is block diagram of a portion of an exemplary
intelligent, neuromorphic, cognitive system 200 with adap-
tive features, i.e., an exemplary adaptive cognitive system
200. System 200 includes at least one computing device 105
that is coupled to other devices 220 via a communication
network 225. Embodiments of network 225 may include
operative coupling with, without limitation, the Internet, a
local area network (LAN), a wide area network (WAN), a
wireless LAN (WLAN), and/or a virtual private network
(VPN). While certain operations are described below with
respect to particular computing devices 105, it is contem-
plated that any computing device 105 may perform one or
more of the described operations.

Referring to FIGS. 1 and 2, in the exemplary embodiment,
computing device 105 is coupled to network 225 via commu-
nication interface 135. In an alternative embodiment, com-
puting device 105 is integrated with other devices 220. Com-
puting device 105 interacts with a first operator 230 (e.g., via
user input interface 130 and/or presentation interface 120). In
one embodiment, computing device 105 presents information
about system 200, such as alarms, to operator 230. Other
devices 220 interact with a second operator 235 (e.g., viauser
input interface 130 and/or presentation interface 120). For
example, other devices 220 present alarms and/or other
operational information to second operator 235. As used
herein, the term “operator” includes any person or machine in
any capacity associated with operating and maintaining sys-
tem 200, including, without limitation, warchouse operations
personnel, system maintenance technicians, system supervi-
sors, and interfacing external systems similar to system 200
and/or automated monitoring systems and operating systems.

In the exemplary embodiment, adaptive cognitive system
200 includes one or more monitoring sensors 240. Monitor-
ing sensors 240 collect operational data including, without
limitation, real-time shipment and delivery information, real-
time warehouse inventory information, real-time status infor-
mation from warehouse robots, real-time weather and traffic
information, and/or any other type of data. Such data and
information may be obtained from devices that include, with-
out limitation, gyroscopes, accelerometers, position detec-
tors, global positioning systems (GPSs), and Internet
resources. Monitoring sensors 240 repeatedly (e.g., periodi-
cally, continuously, and/or upon request) transmit operational
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data at the time of measurement and/or receipt. Computing
devices 105 within system 200 receive and process the opera-
tional data. Also, each computing device 105 includes, with-
out limitation, sufficient data, algorithms, and commands to
facilitate centralized and/or distributed monitoring and man-
agement of system 200 (discussed further below).

FIG. 3 is a schematic view of an exemplary high-level
cognitive architecture 300 that may be used with adaptive
cognitive system 200. System 200 is versatile and scalable
and is not limited to any one practical application. Rather,
system 200 can be used to facilitate any process that benefits
from control and monitoring through an application that con-
tinuously learns, adapts, and determines modifications to
execution plans as a result of real-time information. System
200 may be used as any stand-alone system including, with-
out limitation, asset management systems, supply chain man-
agement systems, and warehouse management systems.
Also, system 200 may be implemented within any facility
requiring cognitive systems with real-time adaptive features,
such facilities including, without limitation, electric power
generation facilities, electric power transmission and distri-
bution networks, chemical processing facilities (e.g., refiner-
ies), fabrication and assembly facilities, bottling and packag-
ing facilities, patient care networks, and communications
networks.

System 200 includes an edge module 302 that includes a
plurality of edge devices 303 that facilitate coupling of sys-
tem 200 to the real world 304. Edge devices 303 include,
without limitation, sufficient input and output devices of any
type that enable operation of system 200 as described herein.

Edge module 302 includes a sensory input sub-module 306
configured to receive inputs from at least one input entity (not
shown in FIG. 3). In the exemplary embodiment, real world
304 includes a plurality of input entities, wherein at least
some of the input entities are any devices that interface with
real world 304 to measure and/or record conditions in real
world 304, such as monitoring sensors 240 (shown in FIG. 2),
including, without limitation, devices that measure and trans-
mit temperatures, remaining power storage of mobile ware-
house robots, lubrication levels of articulated joints of factory
robots, and conveyor belts’ alignment. The plurality of input
entities also includes other devices 220 (shown in FIG. 2),
such as other interfacing systems and agents, including, with-
out limitation, weather forecasting systems, global position-
ing system (GPS) satellite management systems, facility
security systems, enterprise resource planning (ERP) sys-
tems, and control systems for communication network 225
(shown in FIG. 2). Moreover, the plurality of input entities
includes computing device 105 (shown in FIGS. 1 and 2).
Furthermore, the plurality of input entities includes, without
limitation, user 125 (shown in FIG. 1) and operators 230 and
235 (both shown in FIG. 2). Also, the plurality of input enti-
ties includes sources of information derived internally within
system 200, including, without limitation, directions and
actions generated by system 200. Sensory input sub-module
306 transmits outputs 307 representative of the inputs
received.

In the context of asset management, examples of additional
data that may be transmitted from real world 304 include,
without limitation, maps of shipping routes, available and
unavailable roads, regional traffic and weather conditions,
regional crime statistics, regional time of day, and season of
the year. Also, in the context of asset management, examples
of'additional data that may be self-transmitted from resources
internal to system 200 include, without limitation, available
trailers, trailer conditions, available robots, warehouse inven-
tories (including, wrongly placed inventory), cargo status,
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vehicle GPS-generated location data, and cargo tempera-
tures. Further, in the context of asset management, examples
of'additional data that may be inputby a human, i.e., user 125,
or ahuman and/or machine, i.e., operators 230 and 235, in the
roles of shipping planner and shipping receiver includes,
without limitation, matching cargo with destinations, select-
ing arrival times, cargo conditions, potential events that ini-
tiate an alert based on a priority of the shipment, allowable
variations in arrival times, and locations to avoid during tran-
sit.

At the sensory input level, there is some filtering and pre-
processing of the incoming information. For example, the
inputs may be monitored consciously by system 200 through
a direct information request. More specifically, environmen-
tal conditions of a region may be monitored against known
and expected conditions for such region and a mismatch may
be flagged for further investigation. Also, the inputs may be
monitored subconsciously through associated agents looking
for specific information and drawing the attention of system
200 to new important changes in the environment, for
example, without limitation, those instances where online
changes to weather and traffic data are implemented.

Also, in the exemplary embodiment, edge module 302
includes a reflex sub-module 308 coupled to sensory input
sub-module 306. Reflex sub-module 308 is configured to
generate at least one autonomic response 309 to outputs 307
transmitted from the plurality of input entities, thereby
bypassing cognitive portions of system 200 (discussed fur-
ther below). Reflex sub-module 308 facilitates at least a por-
tion of intelligent and neuromorphic operation of system 200
as described herein. Such autonomic responses 309 may be
automatically delegated to reflex sub-module as system 200
learns. As system 200 determines that certain conditions do
not need to be transmitted through the cognitive portions of
system 200, system resolution and/or management of such
certain conditions is “pushed-down” to reflex sub-module
308, thereby reducing the use of dedicated cognitive
resources for relatively simple conditions and issues.

In the context of asset management, examples of condi-
tions that can be easily resolved through reflex sub-module
308 include inputs from a shipping planner that are outside
established parameters and/or are not logical. Examples of
such planner inputs include, without limitation, a blizzard in
Arizona and delivery of goods shipped from Los Angeles,
USA to Chicago, USA in one hour. Also, in the context of
asset management, examples of conditions that can be easily
resolved through reflex sub-module 308 include, without
limitation, adjusting a warehouse thermostat setting to
resolve temperatures outside of established thresholds, and
sending alerts for low tire pressures and open doors on
vehicles. Further, in the context of asset management,
examples of conditions that can be easily resolved through
reflex sub-module 308 include, without limitation, directing
warehouse robots to avoid obstacles and to send an alert when
an item leaves a warehouse without an authorized shipping
notice.

Further, in the exemplary embodiment, edge devices 302
include an action sub-module 310 coupled to reflex sub-
module 308. Action sub-module 310 is configured to receive
autonomic responses 309 transmitted from reflex sub-module
308. Action sub-module 310 is also configured to transmit
directives 311 through output devices (not shown in FIG. 3)
resident within edge module 302 to operative entities (not
shown in FIG. 3) in real world 304. Directives 311 direct
execution of a predetermined course of action in real world
304 as a function of autonomic responses 309. As such, action
sub-module 310 initiates, facilitates, and directs physical and
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tangible effects 312 in real world 304 through transmission of
directives 311 to the operative entities.

Edge module 302 receives feedback 314 induced by effects
312 as induced by directives 311 as they are transmitted by
action sub-module 310 to the operative entities in real world
304. Also, sensory input sub-module 306 receives feedfor-
ward information 316 at least partially induced by directives
311 transmitted by action sub-module 310, thereby alerting
sensory input sub-module 306 to anticipate certain feedback
314. At least some of the data 324 received by sensory input
sub-module 306 includes static and dynamic contextual data
318 and feedback 314, both transmitted from sources in real
world 304. Examples of static and dynamic contextual data
318 include, without limitation, statically stored historical
weather and traffic data and dynamic real-time weather and
traffic data, respectively.

System 200 also includes an adaptive cognitive module
320 that performs a significant portion of intelligent, neuro-
morphic, and cognitive operation of system 200 as described
herein. Cognitive module 320 includes a perception sub-
module 322 coupled to sensory input sub-module 306. Per-
ception sub-module 322 is configured to receive static and
dynamic contextual data 318 in addition to other predeter-
mined data 324 from sensory input sub-module 306 and the
associated input entities. Perception sub-module 322 is also
configured to augment incoming data 324, including static
and dynamic contextual data 318 depending on the attention,
experience, context, and expectations of system 200 as dis-
cussed further below. Perception sub-module 322 is further
configured to preprocess incoming information by analyzing
incoming data 324 and interpreting the information in data
324 to determine the subsequent use of the data 324. In
making such determinations, perception sub-module 322
uses conscious goals of system 200, subconscious goals of
system 200, and/or external agent-based behavior, as dis-
cussed further below. Perception sub-module 322 is further
configured to perceive an episodic sense of time through
system 200’s perception of events and stored memories of
such events. Therefore, system 200 demonstrates the ability
to estimate long and short time intervals and perceive time
emotionally, i.e., perceiving the speed of time as passing
slowly when waiting for an event to occur in contrast to time
passing more quickly when satisfactory, or pleasing events
are occurring.

Adaptive cognitive module 320 also includes an emotion
sub-module 330 configured to distinguish between positive
outcomes and negative outcomes, i.e., emotion sub-module
330 generates an emotional response to real world effects 312
generated as a result of executing course of action 384. There-
fore, system 200 makes determinations of events and data that
are good, bad, pleasant, and unpleasant, and modifies course
of action 384 accordingly. For example, without limitation,
incoming data 324 is compared with expected values and can
change perceptions generated by perception sub-module 322
to trigger an emotional response to static and dynamic con-
textual data 318 and real world effects 312.

Adaptive cognitive module 320 further includes a compari-
son sub-module 332 that is coupled to perception sub-module
322 and emotion sub-module 330. Comparison sub-module
332 is configured to compare at least a portion 334 of incom-
ing data 324 with predetermined, expected values stored
within system 200 and make a determination if the compari-
son is a positive or a negative result. Therefore, emotion
sub-module 330 influences comparison sub-module 332, for
example, without limitation, events and data that are per-
ceived by system 200 to be good, bad, pleasant, and unpleas-
ant, will be compared according to such perceptions.
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Adaptive cognitive module 320 also includes a memory
sub-module 336 that is coupled to perception sub-module
322, emotion sub-module 330, and comparison sub-module
332. Memory sub-module 336 is configured to store at leasta
portion 338 of incoming data 324 for further use within sys-
tem 200. Memory sub-module 336 includes a plurality of
memory devices 110, and is therefore physically and virtually
distributed throughout system 200. Memory sub-module 336
is configured to store a plurality of data and data types therein,
including, without limitation, processed data, historical data,
user and customer preferences, user and customer alerts and
alarms, data models, learned patterns, previously compared
data, and algorithms. Emotion sub-module 330 influences
memory sub-module 336, for example, without limitation,
events and data that are perceived by system 200 to be good,
bad, pleasant, and unpleasant, will be stored in memory
according to such perceptions.

As described above, memory sub-module 336 is a soft-
ware-configured SDM that substantially models human
memory to facilitate learning, pattern recognition, and self-
guided decision capabilities. It can be used as a perceptual
memory system that allows for retrieving best-match memo-
ries, associative memories, sequences, and predicting future
inputs. SDM creates a multi-dimensional address space, and
populates that address space with hard locations, i.e., physical
places where data can actually be stored. When storing infor-
mation, a defined sphere of activation distributes the data
among several of the hard locations, thereby creating redun-
dancy and creating an archetype memory that can later be
retrieved with only partial cues. Information is retrieved
through a series of converging recalls that point to an arche-
typical data storage location. Such archetypical data storage
is described further below and facilitates long-term memory
storage of data and models, fuzzy retrieval, partial matching,
and determining connections between data and models.

Such SDM stores raw data and processed data, including,
without limitation, patterns, algorithms, and models. In the
context of an asset management implementation, such data
includes, without limitation, past weather, geographic
regions, user preferences, trailer availability, upper and lower
specification limits for temperatures, assets and their loca-
tions, roads, maps, time, past decisions, alerts, customer busi-
ness rules, lists of possible actions, and events (temporally
organized). In general, SDM facilitates storage of data mod-
els, learned performances, event patterns, previously com-
pared results, and associated algorithms.

As described above, memory sub-module 336 is physically
and virtually distributed throughout system 200 while being
embedded, and distributed, within cognitive module 320. A
first portion (not shown) of memory sub-module 336 is dedi-
cated to short-term, working memory. In the context of an
asset management implementation, working memory may be
used to hold data such as, without limitation, data associated
with cargo shipment trips and loads currently being pro-
cessed. A second portion (not shown) of memory sub-module
336 is dedicated to procedural and working memory, wherein
such working memory facilitates construction of events with
a temporal character, i.e., the abilities of system 200 to sense
time and to form episodic memories of events in a series of
temporally-organized data. In the context of an asset manage-
ment implementation, such working memory facilitates,
without limitation, construction of future trips and recon-
struction of previously completed trips.

A third portion (not shown) of memory sub-module 336
includes semantic long-term memory, i.e., memory in which
associations among items are stored as part of a dual-store
memory model, in contrast to a single-store retrieved context
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model including only working memory. Alternatively, the
third portion of memory sub-module 336 includes “Knowl-
edge-line”, typically shortened to K-line memories, i.e., a
mental agent associated with a group of other mental agents
that are called, or recalled, after a certain problem is solved or
a new idea is formulated. In the context of an asset manage-
ment implementation, such long-term memory facilitates,
without limitation, rapid recall of frequently requested trips
and routes, seasonal and conditional associations with routes,
and user preferences.

Adaptive cognitive module 320 further includes an adap-
tive on-line learning sub-module 340 that is coupled to per-
ception sub-module 322, emotional sub-module 330, com-
parison sub-module 332, and memory sub-module 336.
Learning sub-module 340 is configured to receive at least a
portion 342 of incoming data 324. Learning sub-module 340
includes, without limitation, a plurality of implemented
learning algorithms (discussed further below) that facilitates
adaptive cognitive system 200 being generally adaptable to a
variety of emergent problems that may arise during operation
of system 200. From a broad perspective, adaptive on-line
learning sub-module 340 facilitates system 200 acquiring a
wide range of background knowledge based on interaction
with real world 304.

Adaptive on-line learning sub-module 340 is configured to
adaptively learn as a function of static and dynamic contex-
tual data 318 received while system 200 is on-line, i.e., opera-
tively coupled to, and interacting with, real world 304 through
edge module 302. Learning sub-module 340 is also config-
ured to generate a plurality of data clusters, wherein each of
the data clusters is defined as a function of at least one
attribute. Learning sub-module 340 is further configured to
form at least one model from at least a portion of the data
clusters, wherein the models are configured to substantially
represent actual processes and physical artifacts in real world
304. As discussed further below, learning sub-module 340 is
configured to learn from past experiences through feedback
314 and modify at least one of the models based on feedback
314, as well as historical data, contextual data, and other
on-line data thereby defining at least one modified model. In
this respect, emotion sub-module 330 influences learning
sub-module 340, for example, without limitation, events and
data that are perceived by system 200 to be good, bad, pleas-
ant, and unpleasant, will be influence learning by system 200
according to such perceptions.

In the exemplary embodiment, adaptive cognitive module
320 also includes a data highway 344 that couples adaptive
on-line learning sub-module 340, comparison sub-module
332, and memory sub-module 336 to each other. Data high-
way 344 defines a physical and virtual structure that couples
distributed resources and devices.

Cognitive module 320 further includes a problem solving
sub-module 350 coupled to perception sub-module 322, com-
parison sub-module 332, memory sub-module 336, and
learning sub-module 340. Problem solving sub-module 350
is configured to receive at least a portion 352 of incoming data
324 from perception sub-module 322, including static and
dynamic contextual data 318. Problem solving sub-module
350 includes a plurality of implemented planning/decision-
ing algorithms (discussed further below) that facilitates adap-
tive cognitive system 200 being generally adaptable to a
variety of emergent problems that may arise during operation
of system 200.

Problem solving sub-module 350 is configured to generate
at least one potential solution 353 in accordance with at least
one predetermined goal of adaptive cognitive system 200 to
ameliorate a condition based on at least one of static and
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dynamic contextual data 318 transmitted from perception
sub-module 322 and at least one model defined within
memory sub-module 336 and learning sub-module 340.
Problem solving sub-module 350 is further configured to
generate a new solution and modify an existing solution as a
function of the modified models. Problem solving sub-mod-
ule 350 is coupled to comparison sub-module 332, memory
sub-module 336, and learning sub-module 340 through two-
way communication channels 354.

Adaptive cognitive module 320 also includes an internal
thinking sub-module 360 that is coupled to problem solving
sub-module 350. In the exemplary embodiment, at least a
portion of internal thinking sub-module 360 is embedded
within problem solving sub-module 350 and at least a portion
of internal thinking sub-module 360 is external to, and
coupled to, problem solving sub-module 350. Alternatively,
internal thinking sub-module 360 is either fully embedded
within, or fully external to, problem solving sub-module 350.
Internal thinking sub-module 360 is configured to generate at
least one scenario 362 defining at least one string of fore-
casted real world events resulting from implementation of a
course of action selected from potential solutions 353,
wherein the forecasted real world events are at least one of
possible and probable. Also, data 352 transmitted from per-
ception sub-module 322 facilitates generating at least one
scenario 362 by internal thinking sub-module 360. Examples
of'real world events that may be included within scenario 362
include, without limitation, likely (and unlikely) weather pat-
terns and traffic patterns.

Inherent within adaptive cognitive system 200 are commu-
nications features that couple the components of system 200
as described herein. For example, without limitation, real
world data is transmitted to internal thinking sub-module 360,
wherein real world data includes at least some static and
dynamic contextual data 318. Also, such communication fea-
tures include at least portions of communication interface 135
that facilitate communication between adaptive cognitive
system 200 and other systems and devices to share knowledge
and data therebetween. The language used for communica-
tions within, and external with, system 200 are selected by
system 200 based on the current issues/problems being
addressed by system 200, such language including, without
limitation, machine-to-machine language for knowledge
sharing.

Cognitive module 320 also includes a deliberation sub-
module 380 coupled to problem solving sub-module 350,
action sub-module 310, and perception sub-module 322. In
the exemplary embodiment, deliberation sub-module 380 is
configured to receive at least a portion 382 of incoming data
324 and compare potential solutions 353 transmitted from
problem solving sub-module 350. Deliberation sub-module
380 is also configured to select at least one course of action
384 from potential solutions 353. Deliberation sub-module
380 is further configured to transmit such course of action 384
to action sub-module 310 such that action sub-module 310
generates and transmits directives 311 to operative entities
(not shown in FIG. 3) in real world 304 to execute course of
action 384 in real world 304. Deliberation sub-module 380
includes decision-making features that facilitate choosing
course of action 384 from potential solutions 353, wherein
such decision-making features also facilitate selection of
decisions in dynamic environments and in static environ-
ments using dynamic data and static data. Deliberation sub-
module 380 uses information stored in memory sub-module
336, including, without limitation, models, events, prepro-
cessed sensory input, and the current emotional state of sys-
tem 200.
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Courses of action 384 differ from autonomic responses 309
in that autonomic responses 309 are generated subcon-
sciously, i.e., automatically in response to certain outputs 307
transmitted from sensory input sub-module 306, thereby
bypassing cognitive module 320. Such autonomic responses
309 are similar to subconscious, impulsive actions performed
by humans that require little to no deliberation, e.g., adjusting
an angle and distance of reading materials to more easily read
the words. In the context of asset management, examples of
conditions that can be easily resolved through autonomic
responses 309 include, without limitation, adjusting a ware-
house thermostat setting to resolve temperatures outside of
established thresholds, and directing warehouse robots to
avoid obstacles.

In contrast, courses of action 384 are generated as a func-
tion of analysis and deliberation of incoming data 324 by
system 200 on a conscious level, i.e. cognitive level. Such
courses of action 384 are similar to deliberate, i.e., intentional
decisions made by humans, e.g., selection of the reading
materials. Adaptive cognitive system 200 thereby demon-
strates intentionality based on cognitive deliberation. Courses
of'action 384 may be generated as aresponse to changes in the
state of an edge device representative of a change in real
world 304 or a virtual change. In the context of asset man-
agement, examples of conditions that can be resolved through
deliberation and intentional action include, without limita-
tion, redirecting a shipment based on emergent and adverse
traffic conditions in the near vicinity of the shipment. One
possible action is no action at all.

FIG. 4 is a flow chart of an exemplary model 386 of per-
ception data flow that may be used with adaptive cognitive
system 200 (shown in FIG. 2). In the exemplary embodiment,
perception sub-module 322 facilitates “making sense” the
current situation based on incoming data 324 (shown in FIG.
3) that includes feedback 314.

In general, perception sub-module 322 facilitates interpret-
ing hidden data in the raw sensory information and deter-
mines if the input data requires action in terms of problem
solving, learning, or deliberation. Such data routing decisions
in perception sub-module 322 are directed by conscious goals
of system 200, subconscious goals of system 200, or agent-
based behavior of system 200. Operation of perception sub-
module 322 is directly influenced by attention, expectations,
context, and emotions. When conducting a task, system 200
may be focused on either a single item/issue or a plurality of
items/issues. The degree of attention directed towards the
incoming data and the associated conditions and situations
directly affects the amount of cognitive resources that will be
directed to such conditions and situations. Also, the degree of
attention to any particular problem depends on factors that
include, without limitation, the nature and magnitude of the
problem and the goals to be achieved.

The expectations of system 200 will determine if the
degree of attention should be increased, decreased, or kept as
is based on the degree of success of directives 311 as shown
through eftects 312 (both shown in FIG. 3). The context of the
incoming data influences the degree of attention directed
toward the incoming data, wherein data indicative of a pri-
mary effect will receive more attention than data associated
with less critical effects. The emotions of system 200 are used
to influence operation of perception sub-module 322,
wherein a positive result and a negative result will have dif-
ferent effects on system 200.

Also, in general, with respect to perception sub-module
322 and system 200, perception is more than mere pattern
recognition, i.e., perception includes use of sensory informa-
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tion, embedded information in system 200, e.g., the model of
real world 304 (shown in FIG. 3) and the self-contained
model of system 200.

In the exemplary embodiment, model 386 includes
memory sub-module 336 coupled to sensory input sub-mod-
ule 306 and perception sub-module 322 through at least a
portion of feedback 314. Model 386 also includes a prepro-
cess function block 388 positioned between sensory input
sub-module 306 and perception sub-module 322. As
described above, system 200 performs some filtering and
preprocessing of the incoming information, wherein prepro-
cess function block 388 performs the filtering and preprocess-
ing. Model 386 also includes a further processing function
block 390 coupled to memory sub-module 336, wherein func-
tion block 390 facilitates engaging at least one of problem
solving sub-module 350, learning sub-module 340, and delib-
eration sub-module 380.

Also, in the exemplary embodiment, memory sub-module
336 transmits data stored therein as a function of requests by
sensory input sub-module 306, preprocess function block
388, perception sub-module 322, and further processing
function block 390. Sensory input sub-module 306 requests
and receives data, including, without limitation, missing data
392 that includes, without limitation, data that is missing, but
needed, and is resident within memory sub-module 336. Pre-
process function block 388 requests and receives data, includ-
ing, without limitation, priming data 394 that includes, with-
out limitation, data that facilitates filtering and preprocessing
of'the information received by sensory input sub-module 306.

Further, in the exemplary embodiment, perception sub-
module 322 requests and receives data, including, without
limitation, internal data 394 that includes, without limitation,
data and models that are internal to system 200. Perception
sub-module 322, through comparison sub-module 332, com-
pares sensory input data 324 with associated internal data 394
and models and determines if there is a positive match, a
positive mismatch, or no associated internal data (indicative
of'a novel input), and directs a request to further processing
function block 390. Function block 390 requests the neces-
sary data from memory sub-module 336 and function block
390 directs the data to at least one of problem solving sub-
module 350, learning sub-module 340, and deliberation sub-
module 380.

In general, perception sub-module 322 has a perception of
time, i.e., system 200 can analyze data as a function of the
fourth dimension, i.e., time. Time is perceived because sys-
tem 200 perceives events, retains memories of those events,
and forms an episodic sense of time as a result of the memo-
ries. For example, system 200 has the ability to estimate long
durations of time and short intervals of time and discern the
difference therebetween. Also, system 200 facilitates a per-
ceived speed of time typically associated with humans, e.g.,
time seems to pass slowly when anxiously waiting for an
uncheerful event to happen, and time seems to pass more
quickly when cheerful events are occurring.

In the context of an asset management example, for sen-
sory input from a planner interface (not shown, but similar to
user input interface 130 shown in FIG. 1), a planner (includ-
ing, without limitation, user 125 (shown in FIG. 1) and opera-
tors 230 and 235 (human or machine) (both shown in FIG. 2))
inputs a selected arrival time of 4:00 p.m. CST on Dec. 21,
2012 for a cargo shipment that is too close to the actual time
of'the request, i.e.,3:15 p.m. CST on Dec. 21, 2012). To make
that temporal proximity determination, system 200 takes into
consideration the distance between an origin of the trip, i.e.,
New York City, USA, and the destination, i.e., Chicago, USA,
as well as the anticipated time required for loading the cargo
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at the warehouse. Perception sub-module 322 generates a
request for comparison sub-module 332 to compare the
desired time of arrival and the time of request (as input) with
the estimated time from loading plus the trip duration from
the origin to destination, wherein such data is requested from
memory sub-module 336.

An avatar (not shown) will be generated on the planner
interface and will request additional information from the
planner, thereby showing perceptive features to the planner.
The avatar will talk back to the planner and ask if the planner
really meant the cargo arrival time at 4:00 p.m. CST on Dec.
21, 2012, and explain to the planner that the delivery to
Chicago from New York City will take much longer than 15
minutes. Also, system 200 uses its adaptive learning features
to determine trends and patterns associated with the planner,
make determinations if the input or requests are inconsistent,
and ask the planner if there is an error or if the request is new.

Also, in the context of an asset management example, if the
planner inputs that there is a blizzard in Arizona, USA, system
200 will perceive that there is an error and/or inconsistency by
comparing the planner’s input in comparison sub-module 332
with historical weather patterns for the region resident in
memory sub-module 336. An avatar will inform the planner
that such weather is not reasonable and request a confirmation
or a correction. In the event that the planner is also planning
a cargo shipment originating in New York City, and New York
City is experiencing a blizzard, system 200 will recognize the
origin of the error, and will ask the planner if the blizzard
information was for New York City rather than Arizona.

Further, in the context of an asset management example, if
a problem with a cargo shipment comes to the attention of
system 200, system 200 will perceive the feedback from the
receiver and compare it with the feedback from the planner.
Also, system 200 will also perceive the trends in response
from the receiver and the planner concerning the problem and
push the problem resolution to learning sub-portion 340.

Moreover, in the context of an asset management example,
robots in a warehouse can perceive changes in the warehouse
environment, including, without, limitation, the absence ofan
expected item in inventory.

FIG. 5 is a flow chart of an exemplary model 398 of com-
parison data flow that may be used with adaptive cognitive
system 200. In the exemplary embodiment, comparison sub-
module 332 is directly or indirectly coupled to each of prob-
lem solving sub-module 350, perception sub-module 322,
deliberation sub-module 380, sensory input sub-module 306,
emotion sub-module 330, memory sub-module 336 and
learning sub-module 340. Comparison sub-module 332 is
requested by those other portions of system 200 to perform
data comparisons as needed. Comparison sub-module 332
returns a comparison output to the component that requested
the comparison. For example, as described above for percep-
tion sub-module 322, comparison sub-module 332 compares
sensory input data 324 with associated internal data 394 and
determines if there is a positive match, a positive mismatch, or
no associated internal data (indicative of a novel input), and
directs a request to further processing function block 390
(shown in FIG. 4).

In the context of an asset management example, for sen-
sory input from a planner interface or a receiver interface
(neither shown, but both similar to user input interface 130
shown in FIG. 1), a planner (including, without limitation,
user 125 (shown in FIG. 1) and operators 230 and 235 (human
or machine) (both shown in FIG. 2)), the sensory input is
compared with a model of expected input, e.g., without limi-
tation, previous orders and delivery times. An unusual order
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may trigger a different perception, e.g., an avatar (not shown)
may request an order confirmation.

Also, in the context of an asset management example,
incoming data 324 (shown in FIG. 3) from sources other than
human are treated like any sensory input, i.e., the data can be
compared with expected values, e.g., expected weather by
season, wherein system 200 can change perceptions or trigger
emotions in response to such data 324. Further, in the context
of an asset management example, warchouse robots could
compare conditions from their sensory input devices (not
shown), e.g., without limitation, bump sensors and pointing
lasers, and compare with an internally-embedded map of the
warehouse environment.

FIG. 6 is a flow chart of an exemplary functional logic
architecture 400 that may be used with intelligent, neuromor-
phic, cognitive, system 200. FIG. 7 is a view of functional
logic architecture 400 in relationship to high-level cognitive
architecture 300. In the exemplary embodiment, a material
shipping example is used to illustrate the interaction of por-
tions of high-level cognitive architecture 300 and functional
logic architecture 400.

Functional logic architecture 400 includes two sequences,
i.e., a production sequence 402 and a learning sequence 404.
Production sequence 402 facilitates operation of system 200
to control at least a portion of the environment of real world
304 (shown in FIG. 3) to achieve a goal of system 200.
Learning sequence 404 facilitates a training process that gen-
erates an inventory of success-oriented models based on his-
torical data including, without limitation, positive outcomes
and the negative outcomes.

Production sequence 402 includes a START function block
410 that requires at least some user information, e.g., a ship-
ping origin and a shipping destination. Sequence 402 also
includes an input capture function block 412 coupled to a
plurality of data registers 414 that include data, e.g., the
latitudes and longitudes of the shipping origin and shipping
destination. Data registers 414 are input entities as described
above, and registers 414 may be resident within an external
system, e.g., an Internet-based mapping/GPS application.
Sequence 402 further includes a data check function block
416 that verifies that the necessary inputs to initiate the ship-
ping process are available and that the data is complete. Such
verification of data completeness represents one aspect of
data preprocessing as used by system 200. If the data from
registers 414 is determined to be incorrect, a request for user
input 418 is transmitted to at least one of user 125 (shown in
FIG. 1) and first operator 230 and second operator 235 (hu-
man or machine) (both shown in FIG. 2). In the exemplary
embodiment, user 125 and operators 230 and 235 are input
entities as described above. Function blocks 410, 412, and
416, registers 414, and request for user input 418 are associ-
ated with sensory input sub-module 306 and perception sub-
module 322.

Production sequence 402 also includes an input compari-
son function block 420 that compares the validated input
values. i.e., verified for completeness, against upper and
lower parameters such that the accuracy of the data is verified.
A lookup action 422 is performed, i.e., system 200 executes a
lookup within memory sub-module 336 by requesting data
from registers 424, e.g., upper and lower parameters for the
latitude and longitude data provided as described above. Ifthe
data is determined to be invalid, request for user input 418 is
invoked as described above.

Production sequence 402 further includes a memory veri-
fication function block 426 that performs a lookup action 428
in memory sub-module 336 to determine if the parameter-
validated data is stored in data register 430 located in memory
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sub-module 336. For example, system 200 will determine if
the data associated with the shipping origin and the shipping
destination are in memory sub-module 336. Input compari-
son function block 420 and memory verification function
block 426 are associated with perception sub-module 322 and
comparison sub-module 332.

If the data is not in memory sub-module 336, production
sequence 402 includes a sensory input agent function block
432 that searches for the correct information. Function block
432 is associated with deliberation sub-module 380 and
action sub-module 310. For a specific deficiency, e.g., miss-
ing location data, a potential solution 353 (shown in FIG. 3)is
generated. One example of a potential solution 353 is “look-
ing on the Internet for the missing data.” A similar course of
action 384 (shown in FIG. 3) is decided upon, and directions
311 (shown in FIG. 3) are executed in real world 304 to input
such data 318 (shown in FIG. 3) into sensory input sub-
module 306. Once the data is received by sensory input sub-
module 306, the data is transmitted to registers 430 through a
store action 434. Alternatively, for such simple activities,
such as a data request, the data request may be executed
through reflex sub-module 308 to generate an autonomic
response 309.

Production sequence 402 also includes a cluster determi-
nation function block 436 that generates data clusters C,,
wherein i represents any whole number greater than 0, and up
to N clusters. Data clusters C, are defined as a function of at
least one attribute, wherein the attributes that define the C, are
one of similarity and dissimilarity. While system 200 endeav-
ors to generalize the attributes, e.g., package dimensions and/
or weight, and inclement weather, system 200 generates data
clusters C, that also facilitate granularity, accuracy, and scal-
ability. Methods and mechanisms for clustering are described
further below. If the data requested in function block 426 is in
data registers 430, cluster determination function block 436
receives the data and generates a data cluster C, defined by the
attributes of that data.

Production sequence 402 further includes a model M,
retrieval function block 438 that is configured to execute a
lookup action 440 within registers 442 in memory sub-mod-
ule 336 for any models M, that are associated with cluster C,.
Models M, are formed within system 200 using at least a
portion of a data cluster C, and are stored in memory sub-
module 336. Methods and mechanisms for modeling are
described further below. In the exemplary embodiment, there
is a one-to-one relationship between a cluster C, and a model
M,. Alternatively, any relationship between clusters C, and
models M, is used that enables operation of system 200 as
described herein, including, without limitation, one-to-many
and many-to-many. Since system 200 strives to generalize the
attributes of cluster C, model M, derived from a generalized-
attribute cluster C, also includes generalized attributes. In the
exemplary embodiment, model M, includes attributes of ship-
ping origin latitude (LatOrig.), longitude (LongOrig.), and
regional origin (RegOrig.). Model M, also includes attributes
of'destination latitude (LatDest.), longitude (LongDest.), and
regional destination (RegDest).

If'the associated model M, is located in memory sub-mod-
ule 336, the data is plugged into model M, through a data
plug-in function block 444. If an associated model M, is not
found, a model lookup function block 446 searches through
memory sub-module 336 for a model M, that includes data
attributes derived from a similar data cluster. If such a model
M, is found, the data is plugged into the similar model M,
through data plug-in function block 444. Cluster determina-
tion function block 436, model retrieval function block 438,
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and data plug-in function block 444 are associated with learn-
ing sub-module 340 and problem solving sub-module 350.

Regardless of how found, once a model M, is located, the
data is plugged into model M, through data plug-in function
block 444 and an output function block 448 transmits the
information required by one of user 125, first human/machine
operator 230, and second human/machine operator 235, e.g.,
an estimated time of arrival (ETA) of the shipment at the
destination. If no models are found, a message function block
450 alerts at least one of user 125, first operator 230, and
second operator 235 to the fact that system 200 is not able to
provide the information requested and system 200 will collect
data to form into new clusters that will subsequently be used
to form new models. Output function block 448 and message
function block 450 are associated with action sub-module
310.

Learning sequence 404 includes a START function block
460 that utilizes at least some user information to initiate the
training process, e.g., a shipping origin and a time of ship-
ping, and a shipping destination and a time of arrival.
Sequence 404 also includes an input capture function block
462 coupled to a plurality of data registers 464 that include
data, e.g., the latitudes and longitudes of the shipping origin
and shipping destination. Data registers 464 are input entities
as described above, and registers 464 may be resident within
an external system, e.g., an Internet-based mapping/GPS
application. Sequence 404 further includes a data check func-
tion block 466 that verifies that the necessary inputs to initiate
the shipping process are available and that the data is com-
plete. Such verification of data completeness represents one
aspect of data preprocessing as used by system 200. Ifthe data
from registers 464 is determined to be incorrect, a rejection
468 is transmitted to at least one of user 125 (shown in FIG. 1)
and first operator 230 and second operator 235 (human or
machine) (both shown in FIG. 2). In the exemplary embodi-
ment, user 125 and operators 230 and 235 are input entities as
described above. Also, in the event of rejection 468, learning
sequence 404 is terminated. Function blocks 460, 462, and
466, registers 464, and rejection 468 are associated with
sensory input sub-module 306 and perception sub-module
322.

Learning sequence 404 also includes an input comparison
function block 470 that compares the validated input values,
i.e., verified for completeness, against upper and lower
parameters such that the accuracy of the data is verified. A
lookup action 422 is performed, i.e., system 200 executes a
lookup within memory sub-module 336 by requesting data
from registers 424, e.g., upper and lower parameters for the
latitude and longitude data provided as described above. Ifthe
data is determined to be invalid, rejection 468 is invoked as
described above.

Learning sequence 404 further includes a memory verifi-
cation function block 476 that performs a lookup action 478
in memory sub-module 336 to determine if the parameter-
validated data is stored in data register 430 located in memory
sub-module 336. For example, system 200 will determine if
the data associated with the shipping origin and the shipping
destination are in memory sub-module 336. Input compari-
son function block 420 and memory verification function
block 426 are associated with perception sub-module 322 and
comparison sub-module 332. The remainder of learning
sequence 404 is associated with learning sub-module 340.

If the data is not in memory sub-module 336, learning
sequence 404 includes a sensory input agent function block
482 that searches for the correct information. For a specific
deficiency, e.g., missing location data, a potential solution
353 (shown in FIG. 3) is generated. One example of a poten-
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tial solution 353 is “looking on the Internet for the missing
data.”” A similar course of action 384 (shown in FIG. 3) is
decided upon, and directions 311 (shown in FIG. 3) are
executed in real world 304 to input such data 318 (shown in
FIG. 3) into sensory input sub-module 306. Once the data is
received by sensory input sub-module 306, the data is trans-
mitted to registers 430 through a store action 484. Alterna-
tively, for such simple activities, such as a data request, the
data request may be executed through reflex sub-module 308
to generate an autonomic response 309.

Learning sequence 404 also includes a model building
function block 486 that is configured to build a model M, for
a cluster C, of data collected as a result of lookup action 478.
Learning sequence 404 further includes a model lookup func-
tion block 488 that performs a lookup action 490 in data
registers 442 of memory sub-module 336. In the exemplary
embodiment, model M, includes attributes of shipping origin
latitude (LatOrig.), longitude (LongOrig.), regional origin
(RegOrig.), and time of shipping (tOrig.) Model M, also
includes attributes of destination latitude (LatDest.), longi-
tude (LongDest.), regional destination (RegDest.), and time
of delivery (tDest).

If model M, does not reside within data registers 442, the
model M, is stored therein through a store action 492 and a
storage function block 494. If a model similar to model M,
resides within data registers 442, a model comparison func-
tion block 496 compares the two models. If the models are
sufficiently different, a decision function block 498 executes
one of three options. A first option is to store the new model
M, and keep the old model. A second optionis to store the new
model M, and discard the old model. A third option is to
discard the new model M, and keep the old model. Regardless
of'the option selected, or if function block 496 determines the
models to be sufficiently similar, a sequence termination
function block 499 ends the operation.

In the exemplary embodiment, lookup actions 422, 428,
440,472, 478, and 490 are performed using the SDM features
of memory sub-module 336.

FIG. 8 is a schematic view of an exemplary learning sub-
system architecture 500 that may be used with functional
logic architecture 400 in relationship to high-level cognitive
architecture 300. Learning subsystem architecture 500 per-
forms adaptive on-line learning of adaptive cognitive system
200. FIG. 8 shows a portion of functional logic architecture
400, i.e., learning subsystem 500, with greater granularity.

In the exemplary embodiment, model building function
block 486 is associated with learning sub-module 340. Also,
model lookup function block 488 and model comparison
function block 496 are associated with comparison sub-mod-
ule 332. Further, decision function block 498 is associated
with deliberation sub-module 380. Moreover, storage func-
tion block 494 is associated with memory sub-module 336.

FIG. 9 is a schematic view of an exemplary problem solv-
ing subsystem architecture 550 that may be used with func-
tional logic architecture 400 in relationship to high-level cog-
nitive architecture 300. Problem solving subsystem
architecture 550 cooperates with learning subsystem archi-
tecture 500 (shown in FIG. 8) to execute adaptive on-line
learning of adaptive cognitive system 200. FIG. 8 shows a
portion of functional logic architecture 400, i.e., problem
solving subsystem 550, with greater granularity.

In the exemplary embodiment, cluster determination func-
tion block 436 and model retrieval function block 438 are
associated with comparison sub-module 332. Also, data plug-
in function block 444 is associated with action sub-module
310. Further, model lookup function block 446 is associated
with deliberation sub-module 380.
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Referring to FIGS. 3, 8, and 9 together, learning subsystem
500 and problem solving subsystem 550 together include
comparison sub-module 332, memory sub-module 336,
learning sub-module 340, deliberation sub-module 380, and
action sub-module 310 to leverage feedback 314 from real
world 304 to facilitate system 200 in self-adapting through
learning and problem solving mechanisms. Feedback 314 is
based on either actions that system 200 took or changes in the
associated environment of real world 304 due to other exter-
nal events either from the environment or other agents inter-
acting with system 200.

Inthe exemplary embodiment, learning subsystem 500 and
problem solving subsystem 550 cooperate to use at least one
of' three learning modes, i.e., supervised leaning mode, semi-
supervised learning mode, and reinforcement learning mode.
To facilitate continuous learning within system 200. Super-
vised learning mode defines a class of machine learning tech-
niques. Supervised learning mode uses supervised training
methods to generate sets of clusters C, and models M, from
supervised training data, i.e., labeled input data wherein asso-
ciated desired output values are provided with the training
data. User-controlled labeled data insertion into learning
sequence 404 (shown in FIG. 6) is an example of the super-
vised learning mode.

Semi-supervised learning mode defines a class of machine
learning techniques that make use of both labeled and unla-
beled data for training, wherein at least a portion of the input
training data is labeled data and the remainder of the training
data is unlabeled data. User-controlled labeled and unlabeled
data insertion into learning sequence 404 (shown in F1G. 6) is
an example of the semi-supervised learning mode. Moreover,
insertion of user-inserted labeled data and unlabeled numeri-
cal data collected through sensory input sub-module 306
facilitates system 200 adaptively learning by generating sets
of clusters C, and models M, from both the labeled and unla-
beled training data.

Reinforcement learning mode defines a class of machine
learning techniques that is concerned with how an agent
ought to take actions in an environment so as to maximize
some notion of reward. In the exemplary embodiment, system
200 uses reinforcement learning techniques that are based on
reward or penalties to generate an emotional response from
emotion sub-module 330. Also, emotion sub-module 330
responds to criticisms from either real world 304 or an input
entity, i.e., a human or another system.

Referring to FIGS. 8 and 9, lookup action 440 (associated
with model retrieval function block 438) and lookup action
490 (associated with model lookup function block 488) are
performed using the SDM features of memory sub-module
336. Also, learning sub-module 340 (associated with model
building function block 486) uses at least one of an artificial
neural network (ANN) and a support vector machine (SVM)
to execute the assigned functions. Further, comparison sub-
module 332 (associated with model comparison function
block 496 and cluster determination function block 436) uses
a SVM to execute the assigned functions. Moreover, delib-
eration sub-module 380 (associated with model lookup func-
tion block 446) uses a genetic algorithm (GA) to execute the
assigned functions. ANNs, SVMs, and GAs are discussed
further below.

FIG. 10 is a flow chart of an exemplary input and output
(I/0) architecture 600 that may be used with functional logic
architecture 400 (shown in FIGS. 6 and 7). More specifically,
1/O architecture 600 represents the I/O data flow associated
with learning activities of system 200. Learning in system
200 involves both focused attention to the data flow associ-
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ated with the learning process and peripheral perception, i.e.,
the ability to recognize pertinent data while not necessarily
focusing on such data.

In at least some embodiments, adaptive cognitive system
200 is defined by three functional layers in a model-view-
controller (MVC) pattern. The three layers are the Web user
interface (UI) layer (for the “view”), a controller middle layer
(forthe “controllers™), and algorithms (for the “model”). As is
known in the art of computing system design and implemen-
tation, a variety of methods to implement a system are avail-
able. The plurality of input entities in real world 304 and edge
module 302 (both shown in FIG. 3), including, without limi-
tation, plurality of edge devices 303 (shown in FIG. 3) that
facilitate coupling of system 200 to real world 304 (shown in
FIG. 3), and sensory input sub-module 306 (shown in FIG. 3)
configured to receive inputs from the input entities.

Also, in at least some embodiments, without limitation,
Java® is used to implement the middle layer, and system 200
operates in a plurality of modes including a learning mode, a
forecasting mode, and a deliberation mode. These three
modes include a plurality of decision points. The modes and
decision points are described in detail below.

In the exemplary embodiment, and in the context of asset
management, and more specifically, supply chain manage-
ment, I/O architecture 600 includes a fleet database 602, a
traffic service 604, and a weather service 606 coupled to a
data processing node 608. Alternatively, any type inputs and
any number of inputs are used that enable operation of system
200 as described herein. Fleet database 602, traffic service
604, weather service 606 and data processing node 608 are
associated with perception sub-module 322 and comparison
sub-module 332 (both shown in FIG. 3). Also, the data inputs
from fleet database 602, traffic service 604, and weather ser-
vice 606 are transmitted through sensory input sub-module
306 in edge module 302 (both shown in FIG. 3). Such data
processing in system 200 creates an input file structure (not
shown) within a system database 610, and preprocesses the
data into valid trips.

Also, in the exemplary embodiment, data from system
database 610 is transmitted to an SVM clustering node 612
that is configured through a SVM configuration manager 614.
SVM clustering node 612 is coupled to a system learning
controller 615 that is configured through a system learning
configuration sub-module 616. SVM clustering node 612 and
SVM configuration manager 614 are associated with at least
one clustering algorithm (discussed further below). SVM
clustering node 612 generates data clusters (not shown) based
on at least one data attribute and transmits the data clusters to
asystem deliberation node 618. Clustering of trips is typically
based on similarities that include, without limitation, region,
time, weather conditions, and traffic conditions. System
deliberation node 618 is coupled to a plurality of old data
clustering output registers 620, wherein the data cluster out-
puts from node 612 are evaluated against older data clusters,
and if necessary, a decision is made as to whether the new data
clusters may be transmitted as is, modified, or deleted. Sys-
tem deliberation node 618 transmits the new data clusters to a
plurality of new data clustering output registers 622. Node
618 and registers 620 and 622 are associated with deliberation
sub-module 380 (shown in FIG. 3).

The new data clustering output is transmitted from regis-
ters 622 to at least one of three branches, i.e., to a genetic
algorithm (GA) branch 624, an artificial neural network
(ANN) branch 626, and a SVM learning branch 628. GA
branch 624 includes a GA node 630 coupled to learning
sub-module 340, new data clustering output registers 622,
and a GA configuration manager 632. GA node 630 generates
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amodel based on the clustered data input, for example, with-
out limitation, a shipping itinerary for a package. The model
output is transmitted to a system deliberation node 634. Sys-
tem deliberation node 634 is coupled to a plurality of old GA
output registers 636, wherein the GA model outputs from
node 630 are evaluated against older GA models, and if
necessary, a decision is made as to whether the new GA
models may be transmitted as is, modified, or deleted. System
deliberation node 634 transmits the new GA models to a
plurality of new GA output registers 638.

ANN branch 626 includes an ANN node 640 coupled to
learning sub-module 340, new GA output registers 638, and
an ANN configuration manager 642. ANN node 640 gener-
ates a forecast based on the model input, for example, without
limitation, an ETA for delivery of a package. The forecast
output is transmitted to a system deliberation node 644. Sys-
tem deliberation node 644 is coupled to a plurality of old
ANN output registers 646 and a plurality of old ANN learning
model registers 648, wherein the ANN forecast outputs from
node 640 are evaluated against older ANN forecasts, and if
necessary, a decision is made as to whether the new ANN
forecasts may be transmitted as is, modified, or deleted. Sys-
tem deliberation node 644 transmits the new ANN forecasts
to a plurality of new ANN output registers 650 and a new
ANN model register 652.

SVM branch 628 includes a SVM learning node 654
coupled to new data clustering output registers 622 and a
SVM learning configuration manager 656. SVM learning
node 654 generates a learning model output that is transmit-
ted to a system deliberation node 634. System deliberation
node 634 is coupled to a plurality of 0old SVM learning output
registers 658 and a plurality of old SVM learning model
registers 660, wherein the SVM learning model outputs from
node 656 are evaluated against older SVM learning models,
and if necessary, a decision is made as to whether the new
SVM learning model outputs may be transmitted as is, modi-
fied, or deleted. System deliberation node 634 transmits the
new SVM learning model outputs to a plurality of new SVM
learning output registers 662 and a new SVM learning model
register 664. The new SVM learning model outputs are pri-
marily used for forecasting and clustering.

Operation of I/O architecture 600 of system 200 is facili-
tated by a controller hierarchy (not shown). There are four
controllers, i.e., a system controller, learning controller 615, a
forecasting controller, and a deliberation controller. Learning
controller 615 is the controlling authority for the learning
mode of system 200. It invokes the corresponding SVM con-
figuration manager 614, system learning configuration man-
ager 616, and SVM learning configuration manager 656 for
the execution of the associated learning processes. The fore-
casting controller is the controlling authority for the forecast-
ing mode of system 200. It invokes the corresponding GA
configuration manager 632. The forecasting controller cre-
ates the input file from the inputs provided by a UI (the first
layer), e.g., without limitation, Web UI, and controls ANN
branch 626, including ANN configuration manager 642,
when system 200 is in forecasting mode. The deliberation
controller is the controlling authority for the deliberation
mode of system 200, i.e., it controls system deliberation
nodes 618, 634, 644, and 656. The system controller is the
main controller and controls the other three controllers.

FIG. 11 is a flow chart of an exemplary implementation of
a learning controller sequence 700 that may be used with [/O
architecture 600 (shown in FIG. 8). FIG. 12 is a flow chart of
an exemplary support vector machine (SVM) clustering
sequence 702 of learning controller sequence 700. F1IG. 13 is
a flow chart of an exemplary artificial neural network (ANN)



US 9,239,989 B2

25

and genetic algorithm (GA) sequence 704 of learning con-
troller sequence 700. FIG. 14 is a flow chart of an exemplary
SVM learning sequence 706 of learning controller sequence
700.

In at least some embodiments, learning controller
sequence 700, i.e., the sequence of operations associated with
system learning controller 615 when system 200 is in the
learning mode, uses a plurality of algorithms implemented in
the third layer of system 200, thereby providing the “model”
portion of the model-view-controller (MVC) pattern. As is
known in the art of computing system design and implemen-
tation, a variety of methods to implement a system are avail-
able. Also, in general, the middle layer is developed in Java®
while the third, i.e., algorithm layer is developed using C++.
The interaction between Java® and C++ is achieved using
Java® Native Interface (JNI). Alternatively, any computer
languages are used in any configuration that enable operation
of system 200 as described herein.

Referring to FIG. 11, in the exemplary embodiment, learn-
ing controller sequence 700 includes SVM clustering
sequence 702, ANN and GA sequence 704, and SVM learn-
ing sequence 706. SVM clustering sequence 702 includes
system learning controller 615, a database processing agent
708, a SVM clustering manager 710, and a SVM clustering
sub-sequence 712. ANN and GA sequence 704 includes a GA
manager 714, a GA sub-sequence 716, an ANN manager 718,
and an ANN sub-sequence 720. SVM learning sequence 706
includes a SVM learning manager 722 and a SVM learning
sub-sequence 724. While a particular sequence using SVM,
ANN, and GA is described herein, as is known in the art of
computing system design and implementation, a variety of
methods to implement a system are available. Therefore,
some embodiments use any sequence of SVM, ANN, and
GA, including only one or two of the three, that system 200
deems necessary for the current operational issues being
managed by system 200. Moreover, while SVM, ANN, and
GA are described herein in detail, other sequences may be
used to enable operation of system 200 as described herein.

In the exemplary embodiment, learning controller
sequence 700 includes five managers, i.e., SVM clustering
manager 710, GA manager 714, ANN manager 718, SVM
learning manager 722, and an abstract manager (not shown)
that implements the basic functionality of managers 710, 714,
718, and 722, wherein managers 710, 714, 718, and 722
inherit the functionality of the abstract manager. Managers
710, 714, 718, and 722 facilitate thread management and the
associated logic. In the exemplary embodiment, thread man-
agement is facilitated through dynamic thread creation,
wherein the threads are created as they are needed and once
the thread finishes its execution, the thread is destroyed.
Alternatively, thread management is facilitated through a
thread pool, wherein a thread pool is created during initial-
ization of system 200, or the learning mode thereof, and the
threads are used from this pool as, and when, required. The
threads are created in the thread pool in a suspend status and
they will be active whenever there is a request for the thread.

In the exemplary embodiment, each thread class imple-
ments JNI functions for bi-directional interaction with C++
dlls to facilitate bi-directional communication between C++
dlls in the third layer and Java® in the second layer. The
threads are created and managed by algorithms implemented
specifically for each associated thread.

Also, in the exemplary embodiment, system learning con-
troller 615 starts each of SVM clustering manager 710, GA
manager 714, ANN manager 718, SVM learning manager
722 in the learning mode. Managers 710, 714, 718, and 722
wait for input files to be transmitted into their respective input
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directories. For example, data processing agent 708 transmits
the necessary input files to SVM clustering sequence 712 for
clustering the received data and SVM clustering sequence
712 generates data clusters based on the data input received
using an SVM clustering algorithm. The output, i.e., data
clusters of SVM clustering sub-sequence 712 is the input for
GA manager 714 and GA sub-sequence 716 that generate at
least one model from the data clusters using a GA algorithm.
The output, i.e., models of GA sub-sequence 716 is the input
for ANN manager 718 and ANN sub-sequence 720. ANN
manager 718 and ANN sub-sequence 720 receives the input
models from GA sub-sequence 716, processes the models,
and produces an output, e.g., a forecast using an ANN algo-
rithm. This forecast is normally used for the forecasting mode
of system 200. Moreover, SVM learning manager 722 and
SVM learning sub-sequence 724 include an SVM learning
algorithm, which runs parallel to GA sub-sequence 716 and
ANN sub-sequence 720. SVM learning manager 722 receives
the output, i.e., data clusters of SVM clustering sub-sequence
712 and generates a model that can be used for forecasting
and clustering.

Referring to FIG. 12, the interaction of system learning
controller 615 and SVM clustering manager 710 and SVM
clustering sub-sequence 712 in SVM clustering sequence 702
is shown. Execution of SVM clustering sequence 702 is
closely associated with SVM clustering node 612 (shown in
FIG. 10). In operation, system learning controller 615 reads
726 system learning configuration parameters from system
learning configuration manager 616 (shown in FIG. 8) into
memory sub-module 336 (shown in FIG. 3) and invokes 727
database processing agent 708. Database processing agent
708 reads 728 the database processing agent configuration
parameters into memory sub-module 336 and invokes 729
SVM clustering manager 710. Database processing agent 708
executes 730 alookup for data in system database 610 (shown
in FIG. 10), processes and at least partially clusters 732 the
data called from database 610, and copies 734 the data to an
SVM clustering input directory (not shown). Operation of
database processing agent 708 is then completed 736, i.e.,
database processing agent 708 is “killed” 737.

Also, in operation, SVM clustering manager 710 is fed-
forward the command to execute 730 a lookup for data in
system database 610 from database processing agent 708.
Such execution 730 facilitates SVM clustering manager’s
710 anticipation of data receipt therefrom, i.e., SVM cluster-
ing manager 710 monitors 738 the SVM clustering input
directory for data files transmitted from database processing
agent 708. The features of the abstract manager (not shown)
are extended into SVM clustering manager 710 and manager
710 provides the functionality for incoming data monitoring
and thread management. SVM clustering manager 710 gen-
erates 740 at least one thread (not shown) for SVM clustering
using a SVM clustering algorithm. SVM clustering manager
also creates 741 at least one SVM clustering object to facili-
tate generating the desired data clusters. The number of
threads created will be based on the number of data files that
will be processed in SVM clustering sequence 702.

Further, in operation, SVM clustering sub-sequence 712 is
initiated through receipt of the clustering object. In SVM
clustering sub-sequence 712, the SVM clustering configura-
tion parameters are read 742 into memory sub-module 336
and the data files from the SVM clustering input directory are
read 744 into memory sub-module 336. The SVM clustering
data is processed 746 to define at least one data cluster for use
within ANN and GA sequence 704 (shown in FIG. 11). The
data clusters are stored 748 in the SVM clustering output
directory (not shown).



US 9,239,989 B2

27

Moreover, in operation, once the data clusters are stored
748, operation of SVM clustering processing is completed
750, the SVM clustering object is “destroyed” 752 and the
SVM clustering thread is either “killed” or “suspended” 754.
Operation of SVM clustering interface processing is then
completed 756, i.e., SVM clustering manager 710 is “killed”
757.

Referring to FIG. 13, the interaction of system learning
controller 615 and GA manager 714, GA sub-sequence 716,
ANN manager 718, and ANN sub-sequence 720 in ANN and
GA sequence 704 is shown. Execution of GA sub-sequence
716 is closely associated with GA node 630 (shown in FIG.
10) and execution of ANN sub-sequence 720 is closely asso-
ciated with ANN node 640 (shown in FIG. 10). In operation,
system learning controller 615 reads 802 system learning
configuration parameters from system learning configuration
manager 616 (shown in FIG. 10) into memory sub-module
336 (shown in FIG. 3) and invokes 803 GA manager 714. The
features of the abstract manager (not shown) are extended
into GA manager 714 and manager 714 provides the func-
tionality for incoming data monitoring and thread manage-
ment. GA manager 714 monitors 804 the SVM clustering
output directory (not shown) for data clusters stored 748
(shown in FIG. 10) in the SVM clustering output directory.

Also, in operation, GA manager 714 generates 806 at least
one thread (not shown) for GA model formation using a GA
algorithm. GA manager 714 also creates 807 at least one GA
object to facilitate generating the desired models. The number
of threads created will be based on, for example, without
limitation, the number of data files that will be processed in
GA sub-sequence 716.

Further, in operation, GA sub-sequence 716 is initiated
through receipt of the GA object. In GA sub-sequence 716,
the GA configuration parameters are read 808 into memory
sub-module 336 and the data files from the SVM clustering
output directory are read 810 into memory sub-module 336.
The SVM clustering output data is processed 812 to define at
least one data model for use within ANN sub-sequence 720.
The data models are stored 814 in the GA output directory
(not shown).

Moreover, in operation, once the data models are stored
814, the GA processing is completed 816, the GA object is
“destroyed” 817 and the GA thread is either “killed” or “sus-
pended” 818. Operation of GA interface processing is then
completed 820, i.e., GA manager 714 is “killed” 821.

Continuing to refer to FIG. 13, in operation, system learn-
ing controller 615 reads 802 system learning configuration
parameters from system learning configuration manager 616
into memory sub-module 336 and invokes 822 ANN manager
718. The features of the abstract manager (not shown) are
extended into ANN manager 718 and manager 718 provides
the functionality for incoming data monitoring and thread
management. ANN manager 718 monitors 824 the GA output
directory for data models stored 814 in the GA output direc-
tory.

Also, in operation, ANN manager 718 generates 826 at
least one thread (not shown) for ANN model formation using
an ANN algorithm. ANN manager 718 also creates 827 at
least one ANN object to facilitate generating the desired
models. The number of threads created will be based on,
without limitation, the number of data files that will be pro-
cessed in ANN sub-sequence 720.

Further, in operation, in ANN sub-sequence 720, the ANN
configuration parameters are read 828 into memory sub-mod-
ule 336 and the data files from the GA output directory are
read 830 into memory sub-module 336 and the data files from
the SVM clustering output directory are read 832 into
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memory sub-module 336. The GA output data and the SVM
clustering output data is processed 834 to define at least one
data model for forecasting and clustering use within system
200. The data models are stored 836 in the ANN output
directory (not shown) and stored 838 in memory 336.

Moreover, in operation, once the data models are stored
836 and 838, the ANN processing is completed 840, the ANN
object is “destroyed” and the ANN thread is either “killed” or
“suspended” 842. Operation of ANN interface processing is
then completed 844, i.c., ANN manager 718 is “killed” 845.

Referring to FIG. 14, the interaction of system learning
controller 615 and SVM learning manager 722 and SVM
learning sub-sequence 724 in SVM learning sequence 706 is
shown. Execution of SVM learning sub-sequence 722 is
closely associated with SVM learning node 654 (shown in
FIG. 10). In operation, system learning controller 615 reads
902 system learning configuration parameters from system
learning configuration manager 616 (shown in FIG. 10) into
memory sub-module 336 (shown in FIG. 3) and invokes 903
SVM learning manager 722. The features of the abstract
manager (not shown) are extended into SVM learning man-
ager 722 and manager 722 provides the functionality for
incoming data monitoring and thread management. SVM
learning manager 722 monitors 904 the SVM clustering out-
put directory (not shown) for data clusters stored 748 (shown
in FIG. 12) in the SVM clustering output directory.

Also, in operation, SVM learning manager 722 generates
906 at least one thread (not shown) for SVM learning using a
SVM learning algorithm. SVM learning manager 722 also
creates 907 at least one SVM learning object to facilitate
generating the desired models. The number of threads created
will be based on, without limitation, the number of data files
that will be processed in SVM learning sub-sequence 724.

Further, in operation, in SVM learning sub-sequence 724,
the SVM learning configuration parameters are read 908 into
memory sub-module 336 and the data files from the SVM
clustering output directory are read 910 into memory sub-
module 336. The SVM clustering output data is processed
912 to define at least one data model for training and fore-
casting use within system 200. The data models are stored
914 in the SVM learning output directory (not shown) and
stored 916 in memory 336.

Moreover, in operation, once the data models are stored
914 and 916, the SVM learning processing is completed 918,
the ANN object is “destroyed” 919, and the ANN thread is
either “killed” or “suspended” 920. Operation of SVM learn-
ing interface processing is then completed 922, i.e., SVM
learning manager 722 is “killed” 923.

FIG. 15 is a flow chart of an exemplary model 1000 of
generalized continuous learning that is integral to adaptive
cognitive system 200. In the exemplary embodiment, raw
data 324 representative of real world 304 (shown in FIG. 3) is
received by sensory input sub-module 306. Raw data 324
includes event data 1002 that is representative of feedback
314 (shown in FIG. 3) from real world 304 as a function of
directives 311 transmitted from action sub-module 310 (both
shown in FIG. 3). Perception sub-module 322 receives raw
data 324 from sensory input sub-module 306 and extracts
event data 1002 from raw data 324. Also, external, dynamic,
relevant, contextual data 318 is received by sensory input
sub-module 306, wherein such data 318 includes, without
limitation, real-time data weather and traffic data received
from weather service 606 and traffic service 604 (both shown
in FIG. 10). Perception sub-module 322 receives contextual
data 318 and integrates event data 1002 with contextual data
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318 to form portion 342 of incoming data 318 and 324,
thereby executing actions associated with data processing
node 608 (shown in FIG. 10).

Also, in the exemplary embodiment, data portion 342 is
transmitted to learning sub-module 340 from perception sub-
module 322. Data clusters are formed based on at least one
similar attribute through the use of SVM clustering node 612
(shownin FIG.10) and SVM clustering sequence 702 (shown
in FIGS. 11 and 12). The data clusters are used to build an
abstract model 1004 for each data cluster through use of GA
node 630, ANN node 640, and SVM learning node 654 (all
three shown in FIG. 10), and ANN and GA sequence 704
(shown in FIGS. 11 and 13) and SVM learning sequence 706
(shown in FIGS. 11 and 14). Each model 1004 is stored with
a plurality of models 1006.

Further, in the exemplary embodiment, when models 1006
are used for subsequent activities, data portions 1002 result-
ing from such activities are used to either generate new mod-
els 1004 or modify existing models 1006. Therefore, system
200 facilitates a continuous learning loop 1008 that continu-
ously adapts system 200 to dynamic environmental condi-
tions in real world 304.

FIG. 16 is a flow chart of an exemplary model 1020 of
learning during execution of a plan, including adapting to
changes in the plan, wherein the plan includes multiple ship-
ping routes and trips, wherein such model 1020 may be used
with intelligent, neuromorphic, cognitive system 200. In the
exemplary embodiment, raw telematics data 1022 represen-
tative of real world 304 (shown in FIG. 3) shipping data is
received by sensory input sub-module 306 (shown in FIGS. 3
and 15). Such raw telematics data 1012 includes, without
limitation, GPS data and remote diagnostics data, e.g.,
remaining fuel. Raw telematics data 1022 is transmitted to a
preprocessing function block 1024 in perception sub-module
322. Function block 1024 performs verification of data com-
pleteness in a manner similar to that described for data check
function block 416 in production sequence 402 (both shown
in FIG. 6) as well as other data preprocessing tasks. The
preprocessed data is transmitted to memory sub-module 336
(shown in FIG. 3) to be at least temporarily stored as valid trip
data 1026. In general, collection of data 1022 uses a focused
attention of system 200, such focused attention facilitating
robust learning in system 200.

Also, in the exemplary embodiment, external, dynamic,
relevant, contextual data 1028 is received by sensory input
sub-module 306 and transmitted to perception sub-module
322. Contextual data 1028 includes, without limitation, real-
time data weather and traffic data received from weather
service 606 and traffic service 604 (both shown in FIG. 10),
geographic information system (GIS) data, and fuel availabil-
ity and price data. Such contextual data represents at least one
peripheral perception feature of system 200, such peripheral
perception facilitating robust learning in system 200. A data
integration function block 1030 in perception sub-module
322 receives contextual data 1028, integrates the prepro-
cessed data with contextual data 1018, and extracts similar
features of data 1028 to form trip data with attributes 1032.
The attributes may include, without limitation, geographical
region, time, weather patterns, traffic patterns, and mileage.

Further, in the exemplary embodiment, trip data with
attributes 1032 is transferred and in integrated with contex-
tual data 318 and then all is transmitted to learning sub-
module 340 from perception sub-module 322 to a clustering
function block 1024. Clustering function block 1034 includes
the functionality described for SVM clustering node 612
(shownin FIG.10) and SVM clustering sequence 702 (shown
in FIGS. 11 and 12). Data clusters 1036 of trip data 1032 are
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formed based on at least one of the similar attributes
described above through the use of SVM clustering node 612
(shown in FIG. 10) and SVM clustering sequence 702 (shown
in FIGS. 11 and 12). Data from each trip from trip 1 to trip N
is clustered, wherein N is a whole number. Data clusters 1036
are transmitted to a modeling function block 1038 that
includes the functionality of GA node 630, ANN node 640,
and SVM learning node 654 (all three shown in FIG. 10), and
ANN and GA sequence 704 (shown in FIGS. 11 and 12) and
SVM learning sequence 706 (shown in FIGS. 11 and 14).
Each data cluster 1036 forms a model 1040, wherein each trip
has an associated trip model from trip 1 to trip N. Trip models
1040 may be to used to provide information that includes,
without limitation, multi-route planning information and trip
time estimation.

FIG. 17 is a flow chart of an exemplary model 1050 of
problem solving during derivation of an estimated time of
arrival for a route and trip that may be used with the adaptive
cognitive system 200. In the exemplary embodiment, origin
and destination data 1052 representative of features of the
shipping origin and shipping destination, for example, with-
out limitation, latitudes and longitudes. In general, collection
of data 1052 uses a focused attention of system 200, such
focused attention facilitating robust determinations of accu-
rate ETAs by system 200.

Also, in the exemplary embodiment, external, dynamic,
relevant, contextual data 1028 is received by data integration
function block 1030. Contextual data 1028 includes, without
limitation, real-time data weather and traffic data received
from weather service 606 and traffic service 604 (both shown
in FIG. 10), geographic information system (GIS) data, and
fuel availability and price data. Such contextual data repre-
sents at least one peripheral perception feature of system 200,
such peripheral perception facilitating robust determinations
of accurate ETAs by system 200. Data integration function
block 1030 receives contextual data 1028, integrates origin
and destination data 1052 with contextual data 1018, and
extracts similar features of data 1028 and 1052 to form trip
data with attributes 1054. The attributes may include, without
limitation, geographical region, time, weather patterns, traffic
patterns, and mileage.

Further, in the exemplary embodiment, a classification
function block 1056 receives trip data with attributes 1054
and classifies data 1054 according to at least one of such
attributes. The classified data is transmitted to a clustering
function block 1058 that is similar to clustering function
block 1034 (shown in FIG. 16) and generates at least one data
cluster C, 1060, wherein i is any whole number from 1 to N.
Data cluster C, 1060 is transmitted to a model selection func-
tion block 1062 that is coupled to storage of trip models 1040.
Function block 1062 selects a trip model 1040 most closely
associated with data cluster C, 1060. Selected trip model 1040
and trip data with attributes 1054 are transmitted to a model
M, function block 1064 and an ETA 1066 of the associated
shipment is generated.

FIG. 18 is a flow chart of an exemplary model 1100 of a
decision making process that may be used with adaptive
cognitive system 200. Model 1100 is described in the context
of asset management. In the exemplary embodiment, model
1100 includes edge devices 303 that include a plurality ofuser
interfaces 130. At least one of user interfaces 130 includes a
planner interface (not shown). The planner interface allows a
user, e.g., without limitation, user 125 (shown in FIG. 1) and
operators 230 and 235 (human or machine) (both shown in
FIG. 2), to specify details about the goods that they are about
to ship. Through this interface, they can choose which items
they wish to ship, the destinations for those items, the priority
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of the trip, and other attributes. It is through these attributes
that the system chooses a route, and the planner has the ability
to accept or reject the given route. After the route has been
chosen, the planner will receive updates and alerts about the
condition of the cargo.

At least one of user interfaces 130 includes a receiver
interface. The receiver interface allows a user, e.g., without
limitation, user 125 and human/machine operators 230 and
235, to act as the receiver of the goods being shipped.
Through this interface, the receiver can monitor the status of
goods being shipped to their destination, and they can also
receive alerts about changes in condition of the goods and
arrival time of the shipment. Also, through this interface, they
will be able to accept or reject the chosen route.

Also, in the exemplary embodiment, edge devices 303
include atleast one event interface 1102. Event interface 1102
allows a third user, e.g., without limitation, user 125 and
human/machine operators 230 and 235, the ability to interfere
with the goods being shipped. The user will be able to add
events to the route, which may include weather, traffic, or
other conditions. These events will cause the system to “re-
think™ routes and make decisions during the trip’s execution.

Further, in the exemplary embodiment, edge devices 303
include additional data sources 1104 for receipt of contextual
data. System 200 has access to such additional data sources
1104 when planning the route. These sources of data can be,
but are not limited to, weather, traffic, crime, and maps. These
will assist the decision-making ability of the system.

Model 1100 also includes a language area 1110 that facili-
tates communication between system 200 and real world 304
(shown in FIG. 3), and within system 200 itself to facilitate
thinking, imagination, and planning features of system 200.
Language area 1110 facilitates use of avatars (not shown)
capable of speech to communicate to system users through
user interfaces 130. The avatars are also capable of facial
expressions and vocal intonations to express emotion. Lan-
guage area 1110 also facilitates use of communication
devices and channels including, without limitation, email,
cell phones, collaboration applications, and annunciator sys-
tems.

Language area 1110 also facilitates communication with
additional data sources 1104, such communication including,
without limitation, information requests through search-ori-
ented architectures, queries to the web through web agents,
information requests to telematics devices/systems aboard
trailers, trucks, and rail cars. Language area 1110 further
facilitates two-way communication with warehouse robots
(not shown).

In the exemplary embodiment, language area 1110
includes inner speech and thinking features 1112 that facili-
tate internal data flow within system 200 including, without
limitation, data recall from the SDM features of memory
sub-module 336 (shown in FIG. 3) and organizing informa-
tion perceived from real world 304 to solve problems and
learn. Inner speech and thinking features 1112 also facilitate
inner imagery, emotions, and memory functioning.

Also, in the exemplary embodiment, model 1100 includes
a cognitive area 1120 that is closely associated with cognitive
module 320 (shown in FIG. 3). Cognitive area 1120 facilitates
deliberation and action selection by system 200. For example,
in the context of an asset management application, for a
number of available inputs, there may be several routes
appropriate for the given conditions and destination match-
ups. System 200 will choose the routes and/or load orders to
suggest to the user.

Cognitive area 1120 also facilitates learning by system
200. For example, in the context of an asset management
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application, at the planner and receiver interface, system 200
can learn the name of the planner/receiver and the preferences
of the planner/receiver using, without limitation, an avatar.
Also, system 200 uses additional data sources 1104 to learn
from the stream of information coming therefrom and
uncover patterns in environmental conditions, e.g., without
limitation, weather, traffic, and crime. Further, system 200
may use route-planning system features to learn which routes
the customer rejects and build future routes that won’t get
rejected. Moreover, system 200 facilitates learning by ware-
house robots, e.g., without limitation, the layout of the ware-
house and the location of goods.

In the context of a supply chain management example,
model 1100 facilitates cargo shipments from an origin to a
destination. Planners use the planning interface at user inter-
face 130. The planners interact with a system-generated ava-
tar to input the shipments details such as shipping time, ship-
ping method, the origin, the destination. The avatar, in turn,
interacts with the planner to verify information and to notify
the planner of potential conflicts or inconsistencies.

System 200 requests additional information from the
sources at its disposal, including, without limitation, memory
sub-module 336 and additional data sources 1104 and trans-
mits all to cognitive area 1120 through sensory input sub-
module 306. System 200 proposes an action plan 1130 that
includes a proposed route that is transmitted to the planner at
user interface 130. In the exemplary embodiment, system 200
executes a pre-trip analysis using its decision making features
1131. For example, system 200 will optimize fuel stops based
on current prices. Also, the trip is compared to trips taken in
the past, and then clustered with those trips in memory. Fur-
ther, system 200 is able to learn the time it takes to make a
specific trip, and generalize that information to predict the
times for novel trips though the development of learned mod-
els.

The planner may reject 1132 the plan or accept the plan
1134. If the plan is rejected 1132, system 200 may request
additional information from the planner, pull in additional
information from sources 1104, and/or propose 1130 a
revised or new plan. The accepted plan 1134 is executed
through execution process 1136 and action 1138 is per-
formed, i.e., the cargo is loaded and shipped from the origin.
At the warehouse, robots execute the load order utilizing
technology that includes, without exception, RFID technol-
ogy to locate the goods in the warehouse, and bring them to a
designated area marked as a trailer.

While the shipment is en route, event interface 1102 and/or
additional data sources 1104 updates system 200 with respect
to the status of the shipment, the shipping means, and the
shipping route using transmission of real-time dynamic data
1138 through subconscious agents 1140. The dataupdates are
evaluated by system 200, and new important data 1142 will be
evaluated to determine 1144 if any problems presented are
easy to solve or hard to solve. Those problems that are easy to
solve 1146 will be acted upon independently by system 200.
For example, system 200 facilitates in-vehicle decisioning
through constant analysis of real-time information including,
without limitation, weather, traffic, and the driver’s behavior.

Those problems that are hard to solve 1148 will generate an
alert 1150 that is transmitted 1152 to the planner and/or the
receiver to obtain approval for the revision to the action plan
generated by system 200. In the exemplary embodiment, the
revision is a revised ETA 1154.

The revisions to the action plan due to dynamic conditions
during the execution of the trip exhibit elements of artificial
consciousness and general artificial intelligence (AGI). In
general, AGI systems are flexible and adapt to changing rules,
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thereby facilitating adaption to, and learning from, dynamic
environments and solving dynamic complex problems.
Therefore, since system 200 exhibits elements of conscious-
ness including, without limitation, a degree of self-awareness
(system 200 understands the difference between self and
non-self), the abilities to learn and adapt from/to its environ-
ment, have a general understanding of time (able to play
scenes forward and backward in time), incorporate a wide
range of background knowledge in its decisions, demonstrate
intentionality and resourcefulness, have emotions.

The ability of system 200 to play scenes forward in time is
related to the forecasting features of system 200. As described
above, system 200 generates a plurality of potential solutions
in accordance with at least one predetermined goal of system
200 to ameliorate a dynamically determined condition based
on at least one of real-time dynamic contextual data transmit-
ted from at least one dynamic contextual data entity and at
least one model formed and stored within system 200. System
200 also generates at least one scenario for each of the solu-
tions defining at least one string of forecasted real world
events resulting from implementation of each of the solu-
tions, wherein the forecasted real world events are at least one
of possible and probable. System 200 further compares the
strings of possible and probable forecasted real world events
resulting from the implementation of each of the potential
solutions. System 200 also selects at least one course of action
from the potential solutions and transmits the at least one
directive to at least one operative entity, thereby executing the
at least one course of action.

The ability of system 200 to play scenes backward in time
is related to the learning features of system 200. System 200
determines a pattern of performance of system 200 by ana-
lyzing at least one of historical data and previously generated
courses of action. System 200 also determines a pattern of
performance by determining at least one real world effect
resulting from executing the previously generated courses of
action. System 200 may generate an emotional response to
the at least one real world effect. System 200 also transmits
the pattern of performance to adaptive on-line learning sub-
module 340 (shown in FIG. 3). Further, system 200 modifies
amodel 1040 (shown in FIG. 16). Moreover, system 200 may
modify at least one predetermined goal of system 200, may
generate at least one new goal, and/or may modify atleast one
potential solution in accordance with at least one of the modi-
fied goal and the new goal. Also, system 200 may modify at
least one scenario for the potential solution and/or may gen-
erate at least one scenario for the potential solution. Further,
system 200 may redefine at least one string of forecasted real
world events resulting from actual implementation of each
potential solution. Therefore, system 200 may use the learn-
ing features to reinforce use of existing courses of action that
generate positive results and discourages use of courses of
action that generate negative results.

System 200 includes a visual scheduler/execution display
1156 that displays the progress of the shipment as it com-
pletes the given route. In addition, display 1156 facilitates
demonstrations of system 200 without waiting for the actual
trailer to complete the route. Also, display 1156 will display
changing conditions as a result of new events that may inter-
fere with the trips, such as weather or traffic. Moreover,
system 200 has the ability to carry out “what if?” exercises,
i.e., scenarios of future events and actions can be mapped out
even if no action is taken.

System 200 will execute a post-trip analysis based on data
received, for example, without limitation, reporting based on
fuel usage and engine idle time. Also, if either of fuel usage or
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engine idle time exceeds predetermined parameters, system
200 will store such information and apply it to subsequent
similar trips.

System 200 is scalable, i.e., in some alternative embodi-
ments, system 200 may be scaled downward to execute tasks
for a larger system. Such a scaled-down system will only
require selected data that affects the plan, rather than a con-
tinuous stream of data.

The above-described computer-implemented systems with
adaptive learning provide a cost-effective method for facili-
tating increased reliability and decreasing disruptions of
enterprise operations. Specifically, the systems and methods
described herein provide for flexible and adaptive systems for
the solution of highly complex and dynamic problems. The
systems and methods described herein initiate, facilitate, and
direct physical and tangible effects in the real world through
transmission of directives to operative entities in the real
world, such directives being a result of either autonomic or
cognitive operation. Also, the systems and methods described
herein provide for receipt of real world, real-time feedback
induced by the directives, including internal data of a feed-
forward, i.e., anticipatory nature. Further, the systems and
methods described herein provide for the systems perceiving
an episodic sense of time through perception of events and
storing memories of such events. Moreover, the systems and
methods described herein provide for distinguishing between
positive outcomes and negative outcomes and generating an
emotional response to real world effects generated as a result
of executing a course of action.

Also, the systems and methods described herein utilize
memory in a software-configured SDM configuration that
substantially models human memory to facilitate learning,
pattern recognition, and self-guided decision capabilities.
Further, the systems and methods described herein facilitate
adaptive on-line learning through receipt of dynamic contex-
tual data associated with external events and conditions while
interacting with the real world and using self-adapting, learn-
ing, and problem solving mechanisms. Moreover, the sys-
tems and methods described herein facilitate communication
between the adaptive cognitive system and other systems and
devices to share knowledge and data therebetween.

Furthermore, the systems and methods described herein
utilize deliberation to compare potential solutions, select at
least one course of action from such potential solutions, and
transmit such course of action to generate and transmit direc-
tives to operative entities to execute the course of action in the
real world.

An exemplary technical effect of the methods and com-
puter-implemented systems described herein includes at least
one of (a) enabling initiation of, facilitation of, and direction
of physical and tangible effects in the real world through
transmission of directives to operative entities in the real
world, such directives being a result of either autonomic or
cognitive operation; (b) enabling receipt of real world, real-
time feedback induced by system-generated directives,
including internal data of a feedforward, i.e., anticipatory,
nature; (c) enabling the systems’ perceiving an episodic sense
of'time through perception of events and storing memories of
such events; (d) enabling the systems to distinguish between
positive outcomes and negative outcomes and generate an
emotional response to real world effects generated as a result
of executing a course of action; (e) enabling the systems to
substantially models human memory to facilitate learning,
pattern recognition, and self-guided decision capabilities
through utilizing memory in a software-configured SDM
configuration; (f) enabling the systems to facilitate adaptive
on-line learning through receipt of dynamic contextual data
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associated with external events and conditions while interact-
ing with the real world and using self-adapting, learning, and
problem solving mechanisms; (g) enabling communication
between the adaptive cognitive system and other systems and
devices to share knowledge and data therebetween; and (h)
enabling deliberative features of the system to compare
potential solutions, select at least one course of action from
such potential solutions, and transmit such course of action to
generate and transmit directives to operative entities to
execute the course of action in the real world.

Exemplary embodiments of computer-implemented sys-
tems with adaptive learning features and methods for operat-
ing such systems are described above in detail. The computer-
implemented systems and methods of operating such systems
are not limited to the specific embodiments described herein,
but rather, components of systems and/or steps of the methods
may be utilized independently and separately from other
components and/or steps described herein. For example, the
methods may also be used in combination with other enter-
prise systems and methods, and are not limited to practice
with only the asset management and supply chain manage-
ment systems and methods as described herein. Rather, the
exemplary embodiment can be implemented and utilized in
connection with many other enterprise applications.

Although specific features of various embodiments of the
invention may be shown in some drawings and not in others,
this is for convenience only. In accordance with the principles
of the invention, any feature of a drawing may be referenced
and/or claimed in combination with any feature of any other
drawing.

This written description uses examples to disclose the
invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any
incorporated methods. The patentable scope of the invention
is defined by the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language
of'the claims, or if they include equivalent structural elements
with insubstantial differences from the literal language of the
claims.

What is claimed is:

1. A computer-implemented system comprising:

an edge module;

at least one input device coupled to said edge module, said

at least one input device configured to generate data

input signals; and

a cognitive module coupled to said edge module, said

cognitive module comprising:

a perception sub-module coupled to said edge module,
said perception sub-module configured to receive the
data input signals;

a learning sub-module coupled to said perception sub-
module, said learning sub-module configured to
adaptively learn at least in part utilizing the data input
signals;

a memory sub-module configured to store a plurality of
models formed within said learning module from a
plurality of data clusters formed within said learning
module; and

a problem solving sub-module coupled to each of said
perception sub-module, said memory sub-module,
and said learning sub-module, said problem solving
sub-module configured to generate at least one poten-
tial solution in accordance with at least one predeter-
mined goal of said system to ameliorate a condition
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based on at least one of the data input signals trans-
mitted from said perception sub-module and at least
one of said plurality of models, wherein said cognitive
module further comprises an internal thinking sub-
module coupled to said problem solving sub-module
said internal thinking sub-module configured to gen-
erate at least one scenario defining at least one string
of forecasted real world events resulting from imple-
mentation of a course of action selected from said at
least one potential solution, wherein said forecasted
real world events are at least one of possible and
probable.

2. The computer-implemented system in accordance with
claim 1, wherein said system further comprises an asset man-
agement system.

3. The computer-implemented system in accordance with
claim 1, wherein said learning sub-module is further config-
ured to:

generate a plurality of data clusters, each of said plurality
of data clusters is defined at least in part utilizing at least
one attribute; and

form at least one model from at least a portion of said
plurality of data clusters.

4. The computer-implemented system in accordance with
claim 1, wherein said cognitive module further comprises at
least one communication channel coupled to said internal
thinking sub-module and coupled to at least one input entity,
said at least one communication channel configured to:

transmit real world data to said internal thinking sub-mod-
ule, wherein at least some of the real world data is static
and dynamic data, wherein at least some of the static
data is static contextual data and at least some of the
dynamic data is dynamic contextual data; and

communicate with other systems to share knowledge and
data therebetween.

5. The computer-implemented system in accordance with
claim 1, wherein said cognitive module further comprises:

a deliberation sub-module coupled to said problem solving
sub-module and said perception sub-module, said delib-
eration sub-module configured to:
compare a plurality of potential solutions transmitted

from said problem solving sub-module; and
select at least one course of action from said plurality of
potential solutions, and

an action sub-module coupled to said deliberation sub-
module, said action sub-module configured to transmit
directives to at least one operative entity to execute said
at least one course of action in the real world.

6. The computer-implemented system in accordance with

claim 5, wherein:

said perception sub-module is further configured to receive
feedback from said at least one input entity;

said learning sub-module is further configured to modify at
least one of said plurality of models at least in part
utilizing the feedback, thereby defining at least one
modified model; and

said problem solving sub-module is further configured to at
least one of generate a new solution and modify an
existing solution as a function of said at least one modi-
fied model.

7. The computer-implemented system in accordance with

claim 6, wherein said edge module comprises at least one of:

a sensory input sub-module comprising said at least one
input entity;

a reflex sub-module coupled to said sensory input sub-
module, said reflex sub-module configured to generate
at least one autonomic response to input signals trans-
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mitted from said at least one input entity, thereby
bypassing said cognitive module; and

said action sub-module further coupled to said reflex sub-

module, said action sub-module further configured to
transmit directives to at least one operative entity to
execute at least one predetermined course of action as a
function of said at least one autonomic response.

8. The computer-implemented system in accordance with
claim 1, wherein said cognitive module further comprises a
comparison sub-module and an emotion sub-module,
wherein said comparison sub-module, said learning sub-
module, and said memory sub-module cooperate to with said
emotion sub-module to:

distinguish between positive outcomes and negative out-

comes; and

modify at least one of said plurality of models based on at

least one of the positive outcomes and the negative out-
comes.
9. A method of using a computer-implemented system
having adaptable cognitive features, said method comprising
executing instructions stored on a computer-readable
medium comprising:
generating a plurality of potential solutions in accordance
with at least one predetermined goal of the computer-
implemented system to ameliorate a dynamically deter-
mined condition based on at least one of real-time data
inputs transmitted from at least one data input entity and
at least one model formed and stored within the com-
puter-implemented system;
generating at least one scenario for each of the plurality of
solutions defining at least one string of forecasted real
world events resulting from implementation of each of
the plurality of solutions, wherein the forecasted real
world events are at least one of possible and probable;

comparing the strings of possible and probable forecasted
real world events resulting from the implementation of
each of the plurality of potential solutions to each other;

selecting at least one course of action from the plurality of
potential solutions based at least in part on the compari-
son;
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transmitting at least one directive associated with the at
least one course of action to at least one operative entity,
thereby executing the at least one course of action; and
generating an emotional response to real world effects
generated as a result of executing the at least one course
of action comprising:
distinguishing between at least one positive outcome
and at least one negative outcome; and
modifying at least one of a plurality of models based at
least in part on at least one of the at least one positive
outcome and the at least one negative outcome.

10. The method in accordance with claim 9, wherein gen-
erating a plurality of potential solutions comprises:

generating a plurality of data clusters, wherein each of the

plurality of data clusters is defined at least in part with
respect to at least one attribute; and
forming at least one model from at least a portion of the
plurality of data clusters.

11. The method in accordance with claim 10, wherein
forming at least one model comprises forming a plurality of
models, said method further comprising:

receiving feedback from at least one input entity, wherein

at least a portion of the feedback is real world data, and
at least a portion of the real world data is static and
dynamic data, wherein at least some of the static data is
static contextual data and at least some of the dynamic
data is dynamic contextual data;

modifying at least one of the plurality of models based at

least in part on the feedback, thereby defining at least
one modified model; and

at least one of generating a new solution and modifying an

existing solution as a function of the at least one modi-
fied model.
12. The method in accordance with claim 11 further com-
prising:
generating at least one autonomic response to the feedback
received from the at least one input entity; and

transmitting at least one directive to at least one operative
entity, thereby executing at least one predetermined
course of action as a function of the at least one auto-
nomic response.



